期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
求解一类非光滑凸优化问题的相对加速SGD算法
1
作者 张文娟 冯象初 +2 位作者 肖锋 黄姝娟 李欢 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期147-157,共11页
一阶优化算法由于其计算简单、代价小,被广泛应用于机器学习、大数据科学、计算机视觉等领域,然而,现有的一阶算法大多要求目标函数具有Lipschitz连续梯度,而实际中的很多应用问题不满足该要求。在经典的梯度下降算法基础上,引入随机和... 一阶优化算法由于其计算简单、代价小,被广泛应用于机器学习、大数据科学、计算机视觉等领域,然而,现有的一阶算法大多要求目标函数具有Lipschitz连续梯度,而实际中的很多应用问题不满足该要求。在经典的梯度下降算法基础上,引入随机和加速,提出一种相对加速随机梯度下降算法。该算法不要求目标函数具有Lipschitz连续梯度,而是通过将欧氏距离推广为Bregman距离,从而将Lipschitz连续梯度条件减弱为相对光滑性条件。相对加速随机梯度下降算法的收敛性与一致三角尺度指数有关,为避免调节最优一致三角尺度指数参数的工作量,给出一种自适应相对加速随机梯度下降算法。该算法可自适应地选取一致三角尺度指数参数。对算法收敛性的理论分析表明,算法迭代序列的目标函数值收敛于最优目标函数值。针对Possion反问题和目标函数的Hessian阵算子范数随变量范数多项式增长的极小化问题的数值实验表明,自适应相对加速随机梯度下降算法和相对加速随机梯度下降算法的收敛性能优于相对随机梯度下降算法。 展开更多
关键词 凸优化 非光滑优化 相对光滑 随机规划 梯度方法 加速随机梯度下降
在线阅读 下载PDF
基于信道特征的物联网设备物理层认证
2
作者 江凌云 史秀秀 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期21-28,共8页
目前的物联网设备处在复杂的环境中且资源有限,基于信道特征的被动型物理层认证(Physical Layer Authentication,PLA)方式非常适合应用于目前的物联网设备。而传统基于信道特征的PLA采集到的是静态特征,导致现实中的时变信道认证概率较... 目前的物联网设备处在复杂的环境中且资源有限,基于信道特征的被动型物理层认证(Physical Layer Authentication,PLA)方式非常适合应用于目前的物联网设备。而传统基于信道特征的PLA采集到的是静态特征,导致现实中的时变信道认证概率较低。针对这一问题,使用支持向量机(Support Vector Machine,SVM)对时变信道下提取的信道特征进行分类认证,并使用在线学习随机梯度下降(Stochastic Gradient Descent,SGD)来更新SVM模型,实现了分类模型随着信道的变化而更新。此外,使用了鲁棒主成分分析(Robust Principal Component Analysis,RPCA)对提取的信道特征进行降维处理,降低获取SVM模型的复杂度并抑制了信道噪声的干扰。仿真结果表明,方案改善了时变信道下的认证概率,提高了鲁棒性。 展开更多
关键词 物理层认证 支持向量机 随机梯度下降 鲁棒主成分分析
在线阅读 下载PDF
基于Bagging-Down SGD算法的分布式深度网络 被引量:1
3
作者 秦超 高晓光 陈大庆 《系统工程与电子技术》 EI CSCD 北大核心 2019年第5期1021-1027,共7页
通过对大量数据进行训练并采用分布式深度学习算法可以学习到比较好的数据结构,而传统的分布式深度学习算法在处理大数据集时存在训练时间比较慢或者训练精度比较低的问题。提出Bootstrap向下聚合随机梯度下降(Bootstrap aggregating-do... 通过对大量数据进行训练并采用分布式深度学习算法可以学习到比较好的数据结构,而传统的分布式深度学习算法在处理大数据集时存在训练时间比较慢或者训练精度比较低的问题。提出Bootstrap向下聚合随机梯度下降(Bootstrap aggregating-down stochastic gradient descent,Bagging-Down SGD)算法重点来提高分布式深度网络的学习速率。Bagging-Down SGD算法通过在众多单机模型上加入速度控制器,对单机计算的参数值做统计处理,减少了参数更新的频率,并且可以使单机模型训练和参数更新在一定程度上分开,在保证训练精度的同时,提高了整个分布式模型的训练速度。该算法具有普适性,可以对多种类别的数据进行学习。 展开更多
关键词 深度网络 分布式 Bootstrap向下聚合随机梯度下降 速度控制器
在线阅读 下载PDF
基于算力-能量全分布式在线共享的5G网络负荷管理策略 被引量:4
4
作者 孙毅 陈恺 +4 位作者 郑顺林 王文婷 于芃 李开灿 董文秀 《电力系统保护与控制》 EI CSCD 北大核心 2024年第9期154-165,共12页
5G与边缘计算等信息基础设施海量部署造成运营商用电成本上升,需推动边缘网络与电网的能量互动以节能降本。现有研究重点关注边缘网络参与日前经济调度,未考虑可再生能源和网络流量双重随机性造成的网络能量供需不平衡问题。针对强随机... 5G与边缘计算等信息基础设施海量部署造成运营商用电成本上升,需推动边缘网络与电网的能量互动以节能降本。现有研究重点关注边缘网络参与日前经济调度,未考虑可再生能源和网络流量双重随机性造成的网络能量供需不平衡问题。针对强随机环境下的网络负荷管理问题,提出面向虚拟化边缘网络的能量实时管理策略。首先,以网络用能成本最小化为目标,构建联合网络资源管理、储能充放电与能量共享模型。其次,针对未来网络信息未知无法直接求解的问题,提出基于随机对偶次梯度法的在线管理策略。然后,针对资源共享涉及运营商隐私问题,提出全分布式的计算资源与能量协同共享算法。最后,仿真验证表明,所提在线算法在无需先验知识的前提下有效减少了5G边缘网络的用能成本。 展开更多
关键词 5G通信 在线调度 信息能量耦合 资源共享 随机对偶次梯度法 联邦梯度下降法
在线阅读 下载PDF
深度学习批归一化及其相关算法研究进展 被引量:87
5
作者 刘建伟 赵会丹 +1 位作者 罗雄麟 许鋆 《自动化学报》 EI CSCD 北大核心 2020年第6期1090-1120,共31页
深度学习已经广泛应用到各个领域,如计算机视觉和自然语言处理等,并都取得了明显优于早期机器学习算法的效果.在信息技术飞速发展的今天,训练数据逐渐趋于大数据集,深度神经网络不断趋于大型化,导致训练越来越困难,速度和精度都有待提升... 深度学习已经广泛应用到各个领域,如计算机视觉和自然语言处理等,并都取得了明显优于早期机器学习算法的效果.在信息技术飞速发展的今天,训练数据逐渐趋于大数据集,深度神经网络不断趋于大型化,导致训练越来越困难,速度和精度都有待提升.2013年,Ioffe等指出训练深度神经网络过程中存在一个严重问题:中间协变量迁移(Internal covariate shift),使网络训练过程对参数初值敏感、收敛速度变慢,并提出了批归一化(Batch normalization,BN)方法,以减少中间协变量迁移问题,加快神经网络训练过程收敛速度.目前很多网络都将BN作为一种加速网络训练的重要手段,鉴于BN的应用价值,本文系统综述了BN及其相关算法的研究进展.首先对BN的原理进行了详细分析.BN虽然简单实用,但也存在一些问题,如依赖于小批量数据集的大小、训练和推理过程对数据处理方式不同等,于是很多学者相继提出了BN的各种相关结构与算法,本文对这些结构和算法的原理、优势和可以解决的主要问题进行了分析与归纳.然后对BN在各个神经网络领域的应用方法进行了概括总结,并且对其他常用于提升神经网络训练性能的手段进行了归纳.最后进行了总结,并对BN的未来研究方向进行了展望. 展开更多
关键词 批归一化 白化 中间协变量迁移 随机梯度下降 归一化传播 批量重归一化 逐步归纳批量归一化 层归一化
在线阅读 下载PDF
基于SVRGD的机载预警雷达自适应波束形成算法 被引量:4
6
作者 彭芳 吴军 +1 位作者 王帅 向建军 《系统工程与电子技术》 EI CSCD 北大核心 2021年第1期83-90,共8页
自适应波束形成是机载预警雷达数字信号处理的一个关键环节。针对传统最小均方误差(least mean square,LMS)算法在短快拍数条件下的波束形成性能下降以及因迭代震荡易收敛于局部最优值的问题,提出了一种基于机器学习的随机方差减小梯度... 自适应波束形成是机载预警雷达数字信号处理的一个关键环节。针对传统最小均方误差(least mean square,LMS)算法在短快拍数条件下的波束形成性能下降以及因迭代震荡易收敛于局部最优值的问题,提出了一种基于机器学习的随机方差减小梯度下降(stochastic variance reduction gradient descent,SVRGD)自适应波束形成方法。首先,建立面阵列接收信号数据模型。其次,基于随机梯度下降原理,引入方差缩减法通过内外循环迭代方式进行梯度修正,以减小随机梯度估计的方差,建立算法模型与实现流程。最后,通过设置平面阵列仿真场景,分析SVRGD自适应波束形成算法在波束形成、抗干扰、收敛速度等方面的性能,验证了该算法在低快拍数、强干扰和强噪声背景下具有的优良能力。 展开更多
关键词 机载预警雷达 自适应波束形成 随机梯度下降 随机方差减小梯度下降 机器学习
在线阅读 下载PDF
基于偏振鉴相的相干合成技术 被引量:5
7
作者 颜宏 叶一东 +1 位作者 卢飞 蒋茂华 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第B05期5-8,共4页
推导了偏振相干合成后任意方向检偏的光强受束间相位差调制的解析表达式,并通过实验验证了表达式的正确性。开展了基于偏振鉴相的相干合成实验研究,用梯度下降算法锁定了两束激光的相位,获得了稳定的输出功率,验证了基于偏振鉴相的相干... 推导了偏振相干合成后任意方向检偏的光强受束间相位差调制的解析表达式,并通过实验验证了表达式的正确性。开展了基于偏振鉴相的相干合成实验研究,用梯度下降算法锁定了两束激光的相位,获得了稳定的输出功率,验证了基于偏振鉴相的相干合成技术可行性;分析了基于偏振鉴相的相干合成技术的优点和对激光器的要求;提出了一种基于偏振鉴相的可定标放大全口径相干合成方法,采用多探测器和多级并行相位调制的方法,解决了随机并行梯度下降(SPGD)算法闭环带宽随合成光束数增加而快速退化的问题。 展开更多
关键词 偏振相干合成 相位探测 随机并行梯度下降算法 外差法
在线阅读 下载PDF
多指标推荐的全局邻域模型 被引量:2
8
作者 吕红亮 王劲林 邓峰 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第11期98-105,共8页
针对现有的多指标推荐模型预测精度较低、速度较慢的问题,提出一种多指标推荐的全局邻域模型(MGNgbr).该模型综合全局的打分信息和隐性反馈数据,通过随机梯度下降法学习物品在各个指标上的相似度,选择相似度最高的前k个邻居参与运算并... 针对现有的多指标推荐模型预测精度较低、速度较慢的问题,提出一种多指标推荐的全局邻域模型(MGNgbr).该模型综合全局的打分信息和隐性反馈数据,通过随机梯度下降法学习物品在各个指标上的相似度,选择相似度最高的前k个邻居参与运算并最终预测用户对物品的打分信息.该模型具有预测准确度高、解释性好、计算复杂度低等优点.实验结果表明,该模型的预测准确度和分类准确度均优于现有的平均值融合模型、多维距离模型和多维奇异值分解模型,与多维奇异值分解模型相比,该模型还具有收敛快、运行时间短等优点. 展开更多
关键词 随机梯度下降法 全局邻域模型 多指标推荐
在线阅读 下载PDF
多级跳线连接的深度残差网络超分辨率重建 被引量:14
9
作者 赵小强 宋昭漾 《电子与信息学报》 EI CSCD 北大核心 2019年第10期2501-2508,共8页
由于快速的卷积神经网络超分辨率重建算法(FSRCNN)卷积层数少、相邻卷积层的特征信息之间缺乏关联性,因此难以提取到图像深层信息导致图像超分辨率重建效果不佳。针对此问题,该文提出多级跳线连接的深度残差网络超分辨率重建方法。首先... 由于快速的卷积神经网络超分辨率重建算法(FSRCNN)卷积层数少、相邻卷积层的特征信息之间缺乏关联性,因此难以提取到图像深层信息导致图像超分辨率重建效果不佳。针对此问题,该文提出多级跳线连接的深度残差网络超分辨率重建方法。首先,该方法设计了多级跳线连接的残差块,在多级跳线连接的残差块基础上构造了多级跳线连接的深度残差网络,解决相邻卷积层的特性信息缺乏关联性的问题;然后,使用随机梯度下降法(SGD)以可调节的学习率策略对多级跳线连接的深度残差网络进行训练,得到该网络超分辨率重建模型;最后,将低分辨率图像输入到多级跳线连接的深度残差网络超分辨率重建模型中,通过多级跳线连接的残差块得到预测的残差特征值,再将残差图像和低分辨率图像组合在一起转化为高分辨率图像。该文方法与bicubic,A+,SRCNN,FSRCNN和ESPCN算法在Set5和Set14测试集上进行了对比测试,在视觉效果和评价指标数值上该方法都优于其它对比算法。 展开更多
关键词 超分辨率重建 深度残差网络 多级跳线连接的残差块 随机梯度下降法
在线阅读 下载PDF
非均衡加权随机梯度下降SVM在线算法 被引量:3
10
作者 鲁淑霞 周谧 金钊 《计算机科学与探索》 CSCD 北大核心 2017年第10期1662-1671,共10页
随机梯度下降(stochastic gradient descent,SGD)方法已被应用于大规模支持向量机(support vector machine,SVM)训练,其在训练时采取随机选点的方式,对于非均衡分类问题,导致多数类点被抽取到的概率要远远大于少数类点,造成了计算上的... 随机梯度下降(stochastic gradient descent,SGD)方法已被应用于大规模支持向量机(support vector machine,SVM)训练,其在训练时采取随机选点的方式,对于非均衡分类问题,导致多数类点被抽取到的概率要远远大于少数类点,造成了计算上的不平衡。为了处理大规模非均衡数据分类问题,提出了加权随机梯度下降的SVM在线算法,对于多数类中的样例被赋予较小的权值,而少数类中的样例被赋予较大的权值,然后利用加权随机梯度下降算法对SVM原问题进行求解,减少了超平面向少数类的偏移,较好地解决了大规模学习中非均衡数据的分类问题。 展开更多
关键词 随机梯度下降(sgd) 非均衡数据 大规模学习 支持向量机(SVM)
在线阅读 下载PDF
非凸极小极大问题的优化算法与复杂度分析 被引量:6
11
作者 徐姿 张慧灵 《运筹学学报》 CSCD 北大核心 2021年第3期74-86,共13页
非凸极小极大问题是近期国际上优化与机器学习、信号处理等交叉领域的一个重要研究前沿和热点,包括对抗学习、强化学习、分布式非凸优化等前沿研究方向的一些关键科学问题都归结为该类问题。国际上凸-凹极小极大问题的研究已取得很好的... 非凸极小极大问题是近期国际上优化与机器学习、信号处理等交叉领域的一个重要研究前沿和热点,包括对抗学习、强化学习、分布式非凸优化等前沿研究方向的一些关键科学问题都归结为该类问题。国际上凸-凹极小极大问题的研究已取得很好的成果,但非凸极小极大问题不同于凸-凹极小极大问题,是有其自身结构的非凸非光滑优化问题,理论研究和求解难度都更具挑战性,一般都是NP-难的。重点介绍非凸极小极大问题的优化算法和复杂度分析方面的最新进展。 展开更多
关键词 极小极大优化问题 复杂度分析 一阶算法 (随机)梯度下降上升算法 交替梯度投影算法 非凸优化 机器学习
在线阅读 下载PDF
通信垃圾文本识别的半监督学习优化算法
12
作者 邱宁佳 沈卓睿 +1 位作者 王辉 王鹏 《计算机工程与应用》 CSCD 北大核心 2020年第17期121-128,共8页
在对非平衡通信文本使用随机下采样来提高分类器性能时,为了解决随机下采样样本发生有偏估计的问题,提出基于否定选择密度聚类的下采样算法(NSDC-DS)。利用否定选择算法的自体异常检测机制改善传统聚类,将样本中心点和待聚类样本分别作... 在对非平衡通信文本使用随机下采样来提高分类器性能时,为了解决随机下采样样本发生有偏估计的问题,提出基于否定选择密度聚类的下采样算法(NSDC-DS)。利用否定选择算法的自体异常检测机制改善传统聚类,将样本中心点和待聚类样本分别作为检测器和自体集,对两者进行异常匹配;使用否定选择密度聚类算法对样本相似性进行评估,改进传统的下采样方法,使用NBSVM分类器对采样后的通信样本进行垃圾识别;使用PCA对样本所具有的信息量进行评估,提出改进的PCA-SGD算法对模型参数进行调优,完成通信垃圾文本的半监督识别任务。为了验证改进算法的优越性,使用不平衡通信文本等多个数据集,在否定选择密度聚类、NSDC-DS算法、PCASGD与传统模型上进行对比分析。实验结果表明,改进的模型不仅具有较好的通信垃圾文本识别能力,而且具有较快和稳定的收敛速度。 展开更多
关键词 非平衡数据 垃圾文本识别 否定选择密度聚类 基于否定选择密度聚类的下采样算法(NSDC-DS) 基于主成分分析的随机梯度下降(PCA-sgd)算法
在线阅读 下载PDF
分布式随机方差消减梯度下降算法topkSVRG 被引量:5
13
作者 王建飞 亢良伊 +1 位作者 刘杰 叶丹 《计算机科学与探索》 CSCD 北大核心 2018年第7期1047-1054,共8页
机器学习问题通常会转换成一个目标函数进行求解,优化算法是求解目标函数中参数的重要工具。随机梯度下降(stochastic gradient descent,SGD)是目前应用最广的算法,因其易受噪声干扰只能达到次线性收敛率,而改进后的随机方差消减梯度法(... 机器学习问题通常会转换成一个目标函数进行求解,优化算法是求解目标函数中参数的重要工具。随机梯度下降(stochastic gradient descent,SGD)是目前应用最广的算法,因其易受噪声干扰只能达到次线性收敛率,而改进后的随机方差消减梯度法(stochastic variance reduction gradient,SVRG)则可以达到线性的收敛率。SVRG是一种串行单机版算法,为了应对大规模数据集分布式训练问题,设计一种以SVRG算法思想为基础的分布式SVRG的实现算法topk SVRG。改进在于:主节点维护一个全局模型,从节点基于本地数据进行局部模型更新。每轮迭代时,选择与当前全局模型距离最小的k个局部模型进行平均来更新全局模型,参数k调大可以提高收敛速度,调小k可以保证收敛。理论分析了算法的线性收敛性,基于Spark进行算法实现,通过与Mini-Batch SGD、CoCoA、Splash及相关算法的实验比较,topkSVRG可以在高精度要求下更快地收敛。 展开更多
关键词 机器学习 优化 随机梯度下降(sgd) 随机方差消减梯度法(SVRG) 分布式计算
在线阅读 下载PDF
基于KL散度和近邻点间距离的球面嵌入算法 被引量:5
14
作者 张变兰 路永钢 张海涛 《计算机应用》 CSCD 北大核心 2017年第3期680-683,690,共5页
针对现有球面嵌入算法在非近邻点间的距离度量不准确或缺失的情况下,不能有效地进行低维嵌入的问题,提出了一种新的球面嵌入算法,它能够只利用近邻点间的距离,将任何尺度的高维数据嵌入到单位球面上,同时求出适合原始数据分布的球面半... 针对现有球面嵌入算法在非近邻点间的距离度量不准确或缺失的情况下,不能有效地进行低维嵌入的问题,提出了一种新的球面嵌入算法,它能够只利用近邻点间的距离,将任何尺度的高维数据嵌入到单位球面上,同时求出适合原始数据分布的球面半径。该算法从一个随机产生的球面分布开始,利用KL散度衡量每对近邻点间的归一化距离在原始空间和球面空间中的差异,并基于此差异构建出目标函数,然后再用带有动量的随机梯度下降法,不断优化球面上点的分布,直到结果稳定。为了测试算法,模拟产生了两类球面分布数据:分别是球面均匀分布和球面正态分布的数据。实验结果表明,对于球面均匀分布的数据,即使在近邻点个数很少的情况下,仍然能够将数据准确地嵌入球面空间,嵌入后的数据分布与原始数据分布的均方根误差(RMSE)低于0.000 01,且球面半径的估算误差低于0.000 001;而对于球面正态分布的数据,在近邻点个数较多的情况下,该算法也可以将数据较准确地嵌入球面空间。因此,在非近邻点间距离缺失的情况下,所提方法仍然可以较准确地对数据进行低维嵌入,这非常有利于数据的可视化研究。 展开更多
关键词 球面嵌入 KL散度 随机梯度下降法 最近邻
在线阅读 下载PDF
改进的LeNet-5模型在花卉识别中的应用 被引量:16
15
作者 吴丽娜 王林山 《计算机工程与设计》 北大核心 2020年第3期850-855,共6页
为提高花卉图像的识别率,实现良好的花卉分类效果,提出一类改进型LeNet-5卷积神经网络模型。将原LeNet-5卷积神经网络模型的S4层与C5层之间的连接方式改为全连接,将S2层、S4层的池化操作分别设置为均值池化、最大池化。在此基础上采用... 为提高花卉图像的识别率,实现良好的花卉分类效果,提出一类改进型LeNet-5卷积神经网络模型。将原LeNet-5卷积神经网络模型的S4层与C5层之间的连接方式改为全连接,将S2层、S4层的池化操作分别设置为均值池化、最大池化。在此基础上采用随机梯度下降方法和Dropout防止过度拟合的方法相结合的算法,对Oxford-17花卉数据集进行仿真实验。实验结果表明,改进型LeNet-5卷积神经网络有效且可行,该模型对花卉图像的识别率高达96.5%,与未改进的LeNet-5卷积神经网络模型相比,识别率提高了6.5%。 展开更多
关键词 卷积神经网络 全连接 随机梯度下降 Dropout正则化方法 仿真
在线阅读 下载PDF
基于图片问答的静态重启随机梯度下降算法 被引量:5
16
作者 李胜东 吕学强 《计算机研究与发展》 EI CSCD 北大核心 2019年第5期1092-1100,共9页
图片问答是计算机视觉与自然语言处理交叉的多模态学习任务.为了解决该任务,研究人员提出堆叠注意力网络(stacked attention networks, SANs).研究发现该模型易陷入不好的局部最优解,引发较高的问答错误率.为了解决该问题,提出基于图片... 图片问答是计算机视觉与自然语言处理交叉的多模态学习任务.为了解决该任务,研究人员提出堆叠注意力网络(stacked attention networks, SANs).研究发现该模型易陷入不好的局部最优解,引发较高的问答错误率.为了解决该问题,提出基于图片问答的静态重启随机梯度下降算法.实验结果和分析表明:它的准确率比基准算法提高0.29%,但其收敛速度慢于基准算法.为了验证改善性能的显著性,对实验结果进行统计假设检验.T检验结果证明它的改善性能是极其显著的.为了验证它在同类算法中的有效性,将该算法和当前最好的一阶优化算法进行有效性实验,实验结果和分析证明它更有效.为了验证它的泛化性能和推广价值,在经典的Cifar-10数据集上进行图像识别实验.实验结果和T检验结果证明:它具有良好的泛化性能和较好的推广价值. 展开更多
关键词 图片问答 堆叠的注意力网络 动量 静态重启 随机梯度下降
在线阅读 下载PDF
基于在线核聚类的雷达信号分选方法 被引量:2
17
作者 于新星 王永 《计算机工程》 CAS CSCD 2012年第3期270-272,275,共4页
提出一种变参数在线核聚类算法(OKCAP),将其应用于未知雷达辐射源信号分选中。OKCAP基于支持向量机的思想,采用核映射技术将数据映射到高维线性空间中进行处理,利用随机梯度下降法更新类的边界函数,且梯度下降步长和惩罚项参数可根据雷... 提出一种变参数在线核聚类算法(OKCAP),将其应用于未知雷达辐射源信号分选中。OKCAP基于支持向量机的思想,采用核映射技术将数据映射到高维线性空间中进行处理,利用随机梯度下降法更新类的边界函数,且梯度下降步长和惩罚项参数可根据雷达信号动态调整,从而实现雷达辐射源信号的在线分选。仿真结果证明,该方法具有较快的聚类分选速度和较高的分选准确率。 展开更多
关键词 信号分选 在线聚类 核方法 支持向量机 随机梯度下降
在线阅读 下载PDF
基于栈式稀疏降噪自编码网络的辐射源调制识别 被引量:9
18
作者 李东瑾 杨瑞娟 +1 位作者 李晓柏 董睿杰 《电子学报》 EI CAS CSCD 北大核心 2020年第6期1198-1204,共7页
针对辐射源识别中噪声敏感和识别能力不足等问题,提出了一种基于核空间时频特征与栈式稀疏降噪自编码网络的识别系统.通过时频变换、稀疏域降噪和核空间降维投影降低噪声干扰和特征冗余,基于降噪自编码与稀疏自编码思想构建栈式稀疏降... 针对辐射源识别中噪声敏感和识别能力不足等问题,提出了一种基于核空间时频特征与栈式稀疏降噪自编码网络的识别系统.通过时频变换、稀疏域降噪和核空间降维投影降低噪声干扰和特征冗余,基于降噪自编码与稀疏自编码思想构建栈式稀疏降噪自编码识别网络.实验结果表明系统在识别率和时效性上综合性能最优,能够显著降低噪声敏感性,低信噪比环境下适应性较强.当信噪比为-12dB时,系统对8类辐射源信号的整体平均识别率达到96.75%. 展开更多
关键词 辐射源识别 稀疏降噪自编码 时频特征 核映射 批量随机梯度下降法 dropout正则化
在线阅读 下载PDF
面向停电分类预测的因子分解机模型
19
作者 冉懿 王润年 +2 位作者 潘红伟 俞海猛 袁培森 《计算机工程》 CAS CSCD 北大核心 2022年第5期98-103,111,共7页
可靠的电力供应对于工业生产和居民日常生活至关重要,通过对电力数据平台中的停电数据进行分析和挖掘,可以更好地了解配电网停电的潜在规律。分类预测是数据挖掘和分析中的常见技术,停电分类预测可以为企事业单位的停电规划安排提供决... 可靠的电力供应对于工业生产和居民日常生活至关重要,通过对电力数据平台中的停电数据进行分析和挖掘,可以更好地了解配电网停电的潜在规律。分类预测是数据挖掘和分析中的常见技术,停电分类预测可以为企事业单位的停电规划安排提供决策参考。针对停电分类预测问题,提出一种基于因子分解机(FM)的停电数据分类预测模型。利用决策树算法计算停电数据中不同特征的基尼系数以得出重要性得分,从中筛选与停电预测关联度较大的非稀疏特征。根据不同地区的地理位置关系构建不同地区间的空间位置矩阵,并通过矩阵分解的方式构造不同地区在空间上的地理位置关联特征。为防止FM模型出现过拟合问题,在模型中加入L2-范数正则化。在此基础上,利用随机梯度下降的方法训练FM模型,通过训练完成的FM模型对停电数据进行分类预测。在真实停电数据集上的实验结果表明,该模型在训练数据集和测试数据集上的F1值和准确率分别高达0.90和0.89,优于DNN、SVM、XGBoost等模型。 展开更多
关键词 停电分类预测 决策树 矩阵分解 因子分解机 随机梯度下降方法
在线阅读 下载PDF
基于样条插值的液晶空间光调制器衍射效率优化方法研究 被引量:2
20
作者 康丁 王春阳 +2 位作者 王子硕 王增 郑青泉 《红外与激光工程》 EI CSCD 北大核心 2022年第9期248-257,共10页
针对液晶空间光调制器阵元间相位调制量偏差降低光束衍射效率的问题,提出基于样条插值的液晶空间光调制器衍射效率优化方法。依据泰曼-格林干涉原理,搭建了相位调制系统。对调制器加载阶梯变化的灰度图,通过计算干涉条纹移动量,绘制液... 针对液晶空间光调制器阵元间相位调制量偏差降低光束衍射效率的问题,提出基于样条插值的液晶空间光调制器衍射效率优化方法。依据泰曼-格林干涉原理,搭建了相位调制系统。对调制器加载阶梯变化的灰度图,通过计算干涉条纹移动量,绘制液晶空间光调制器相位调制曲线。采用三次样条反插值法对相位调制曲线进行校正,实现对相位调制量的相位补偿。搭建液晶空间光调制器衍射效率测试系统,对所提优化方法进行实验验证,并与随机梯度下降法进行了对比。结果表明:当光束偏转角度为1.56°、0.78°、0.39°、0.19°时,文中所提方法提高了30%~40%的光束衍射效率,相较于随机并行梯度下降法,衍射效率提高了2%~8%。该方法有效抑制了栅瓣能量,提升了主瓣光束衍射效率,克服了随机并行梯度下降法迭代次数多,优化速度慢,易陷入局部最优的缺点。 展开更多
关键词 液晶空间光调制器 样条插值 相位调制 衍射效率优化 随机并行梯度下降法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部