In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena s...In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena such as phase transitions. The unit difference method is adopted to deduce the phase transition model for water flow irradiated by a high-energy laser. In addition, the model is simulated and verified through experiments. Among them, the experimental verification uses the photographic method, shooting the distribution and the form of the air mass of water flow in different operating conditions, which are compared with the simulation results. The research shows that it is achievable to reduce the intensity of the phase transition by increasing the water flow, reducing the power intensity of the beam, shortening the distance the beam covers, reducing the initial water temperature or adopting a shorter wavelength laser. The study's results will provide the reference for the design of a water-direct-absorption-type high-energy laser energy meter as well as an analysis of the interaction processes of other similar high-power lasers and water flow.展开更多
We investigate the dynamic characteristics of oil-gas-water three-phase flow in terms of chaotic attractor comparison. In particular, we extract a statistic to characterize the dynamical difference in attractor probab...We investigate the dynamic characteristics of oil-gas-water three-phase flow in terms of chaotic attractor comparison. In particular, we extract a statistic to characterize the dynamical difference in attractor probability distribution. We first take time series from Logistic chaotic system with different parameters as examples to demonstrate the effectiveness of the method. Then we use this method to investigate the experimental signals from oil-gas-water three-phase flow. The results indicate that the extracted statistic is very sensitive to the change of flow parameters and can gain a quantitatively insight into the dynamic characteristics of different flow patterns.展开更多
The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008.In this paper,we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficientl...The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008.In this paper,we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the robe were obtained using the MCNP code without influence of y-ray and electronic-noise.The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated.The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI.The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques.And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI.展开更多
Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational F...Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.展开更多
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of ...We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.展开更多
Characterizing countercurrent flow structures in an inclined oil-water two-phase flow from one-dimensional measurement is of great importance for model building and sensor design.Firstly,we conducted oil-water two-pha...Characterizing countercurrent flow structures in an inclined oil-water two-phase flow from one-dimensional measurement is of great importance for model building and sensor design.Firstly,we conducted oil-water two-phase flow experiments in an inclined pipe to measure the conductance signals of three typical water-dominated oil-water flow patterns in inclined flow,i.e.,dispersion oil-in-water pseudo-slug flow (PS),dispersion oil-in-water countercurrent flow (CT),and transitional flow (TF).In pseudo-slug flow,countercurrent flow and transitional flow,oil is completely dispersed in water.Then we used magnitude and sign decomposition analysis and multifractal analysis to reveal levels of complexity in different flow patterns.We found that the PS and CT flow patterns both exhibited high complexity and obvious multifractal dynamic behavior,but the magnitude scaling exponent and singularity of the CT flow pattern were less than those of the PS flow pattern; and the TF flow pattern exhibited low complexity and almost monofractal behavior,and its magnitude scaling was close to random behavior.Meanwhile,at short time scales,all sign series of two-phase flow patterns exhibited very similar strong positive correlation; at high time scales,the scaling analysis of sign series showed different anti-correlated behavior.Furthermore,with an increase in oil flow rate,the flow structure became regular,which could be reflected by the decrease in the width of spectrum and the difference in dimensions.The results suggested that different oil-water flow patterns exhibited different nonlinear features,and the varying levels of complexity could well characterize the fluid dynamics underlying different oil-water flow patterns.展开更多
基于超声波时差测量流量的方法具有非接触、易安装、不改变流体的运动状态等优点,被广泛应用于油田井下流体流速测量分析领域,能够实时测量流体流速,准确分析管道中流体流量的变化。针对传统的超声波流量计功耗高、电路复杂的缺点,根据...基于超声波时差测量流量的方法具有非接触、易安装、不改变流体的运动状态等优点,被广泛应用于油田井下流体流速测量分析领域,能够实时测量流体流速,准确分析管道中流体流量的变化。针对传统的超声波流量计功耗高、电路复杂的缺点,根据超声波时差法测量流量的原理,结合井下高温测量环境,以及未来测井仪器低功耗、小型化的需求,以dsPIC33EV为主控芯片,设计了一种低功耗、小型化的井下超声波流量测量系统。该系统利用dsPIC33EV的充电时间测量单元CTMU(Charging Time Measurement Unit),实现声波传播时差与流量的高精度测量与计算。室内实验平台测试数据表明,该文设计的井下超声波流量测量系统测量相对误差为±7.2%,典型功耗为20mW,技术指标满足生产井流量监测需求。展开更多
文摘In the absorption chamber of a high-energy laser energy meter, water is directly used as an absorbing medium and the interaction of the high-power laser and the water flow can produce a variety of physical phenomena such as phase transitions. The unit difference method is adopted to deduce the phase transition model for water flow irradiated by a high-energy laser. In addition, the model is simulated and verified through experiments. Among them, the experimental verification uses the photographic method, shooting the distribution and the form of the air mass of water flow in different operating conditions, which are compared with the simulation results. The research shows that it is achievable to reduce the intensity of the phase transition by increasing the water flow, reducing the power intensity of the beam, shortening the distance the beam covers, reducing the initial water temperature or adopting a shorter wavelength laser. The study's results will provide the reference for the design of a water-direct-absorption-type high-energy laser energy meter as well as an analysis of the interaction processes of other similar high-power lasers and water flow.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41174109 and 61104148)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011ZX05020-006)the Tianjin City High School Science and Technology Fund Planning Project,China(Grant No.20130718)
文摘We investigate the dynamic characteristics of oil-gas-water three-phase flow in terms of chaotic attractor comparison. In particular, we extract a statistic to characterize the dynamical difference in attractor probability distribution. We first take time series from Logistic chaotic system with different parameters as examples to demonstrate the effectiveness of the method. Then we use this method to investigate the experimental signals from oil-gas-water three-phase flow. The results indicate that the extracted statistic is very sensitive to the change of flow parameters and can gain a quantitatively insight into the dynamic characteristics of different flow patterns.
基金Supported by National Natural Science Foundation of China (Grant No.50876080)
文摘The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008.In this paper,we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the robe were obtained using the MCNP code without influence of y-ray and electronic-noise.The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated.The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI.The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques.And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI.
文摘Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41174109 and 61104148)the National Science and Technology Major Project of China(Grant No.2011ZX05020-006)the Zhejiang Key Discipline of Instrument Science and Technology,China(Grant No.JL130106)
文摘We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174109,61104148,50974095)the National Science and Technology Major Projects(Grant No.2011ZX05020-006)
文摘Characterizing countercurrent flow structures in an inclined oil-water two-phase flow from one-dimensional measurement is of great importance for model building and sensor design.Firstly,we conducted oil-water two-phase flow experiments in an inclined pipe to measure the conductance signals of three typical water-dominated oil-water flow patterns in inclined flow,i.e.,dispersion oil-in-water pseudo-slug flow (PS),dispersion oil-in-water countercurrent flow (CT),and transitional flow (TF).In pseudo-slug flow,countercurrent flow and transitional flow,oil is completely dispersed in water.Then we used magnitude and sign decomposition analysis and multifractal analysis to reveal levels of complexity in different flow patterns.We found that the PS and CT flow patterns both exhibited high complexity and obvious multifractal dynamic behavior,but the magnitude scaling exponent and singularity of the CT flow pattern were less than those of the PS flow pattern; and the TF flow pattern exhibited low complexity and almost monofractal behavior,and its magnitude scaling was close to random behavior.Meanwhile,at short time scales,all sign series of two-phase flow patterns exhibited very similar strong positive correlation; at high time scales,the scaling analysis of sign series showed different anti-correlated behavior.Furthermore,with an increase in oil flow rate,the flow structure became regular,which could be reflected by the decrease in the width of spectrum and the difference in dimensions.The results suggested that different oil-water flow patterns exhibited different nonlinear features,and the varying levels of complexity could well characterize the fluid dynamics underlying different oil-water flow patterns.
文摘基于超声波时差测量流量的方法具有非接触、易安装、不改变流体的运动状态等优点,被广泛应用于油田井下流体流速测量分析领域,能够实时测量流体流速,准确分析管道中流体流量的变化。针对传统的超声波流量计功耗高、电路复杂的缺点,根据超声波时差法测量流量的原理,结合井下高温测量环境,以及未来测井仪器低功耗、小型化的需求,以dsPIC33EV为主控芯片,设计了一种低功耗、小型化的井下超声波流量测量系统。该系统利用dsPIC33EV的充电时间测量单元CTMU(Charging Time Measurement Unit),实现声波传播时差与流量的高精度测量与计算。室内实验平台测试数据表明,该文设计的井下超声波流量测量系统测量相对误差为±7.2%,典型功耗为20mW,技术指标满足生产井流量监测需求。