In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is take...In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.展开更多
In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as ...In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as approximation space for the velocity and the linear element for the pressure. The convergence analysis is presented and optimal error estimates of both broken H^1-norm and L^2-norm for velocity as well as the L^2-norm for the pressure are derived.展开更多
In this paper,we prove some Liouville-type theorems for the stationary magnetomicropolar fluids under suitable conditions in three space dimensions.We first prove that the solutions are trivial under the assumption of...In this paper,we prove some Liouville-type theorems for the stationary magnetomicropolar fluids under suitable conditions in three space dimensions.We first prove that the solutions are trivial under the assumption of certain growth conditions for the mean oscillations of the potentials.And then we show similar results assuming that the solutions are contained in L^(p)(R^(3))with p∈[2,9/2).Finally,we show the same result for lower values of p∈[1,9/4)with the further assumption that the solutions vanish at infinity.展开更多
文摘In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.
基金Supported by the National Natural Science Foundation of China(11271340,116713697)Supported by Henan Natural Science Foundation of China(132300410376)
文摘In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as approximation space for the velocity and the linear element for the pressure. The convergence analysis is presented and optimal error estimates of both broken H^1-norm and L^2-norm for velocity as well as the L^2-norm for the pressure are derived.
基金supported by Inha University Research Grant and National Research Foundation of Korea Grant funded by the Korean Government(RS-2023-00212227)supported by National Research Foundation of Korea Grant funded by the Korean Government(NRF-2020R1C1C1A01006521)。
文摘In this paper,we prove some Liouville-type theorems for the stationary magnetomicropolar fluids under suitable conditions in three space dimensions.We first prove that the solutions are trivial under the assumption of certain growth conditions for the mean oscillations of the potentials.And then we show similar results assuming that the solutions are contained in L^(p)(R^(3))with p∈[2,9/2).Finally,we show the same result for lower values of p∈[1,9/4)with the further assumption that the solutions vanish at infinity.