锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种...锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model,MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。展开更多
针对现存锂电池组内串联单体锂电池健康状态(state of health,SOH)均衡方案需要集中控制器和全局通信、系统建设成本居高不下等问题,提出一种基于一致性算法的锂电池组内单体锂电池SOH主动均衡方案。分析了SOH参数、放电深度(depth of d...针对现存锂电池组内串联单体锂电池健康状态(state of health,SOH)均衡方案需要集中控制器和全局通信、系统建设成本居高不下等问题,提出一种基于一致性算法的锂电池组内单体锂电池SOH主动均衡方案。分析了SOH参数、放电深度(depth of discharge,DOD)和有功功率三者之间的内在联系,设计了有功功率分配和控制算法切换法则。利用一致性算法求解DOD平均值,以达到在无需集中控制器和减少通信信号数量的前提下,实现锂电池组内单体锂电池SOH均衡的控制目标,提高锂电池容量利用率,降低锂电池维护成本。最后,Matlab/Simulink仿真结果说明,所提方案在负荷变化、通信中断、锂电池块数增加和DOD出现测量误差的情况下,均能使锂电池组内串联单体锂电池SOH自均衡。展开更多
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)...针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。展开更多
准确掌握锂离子电池健康状态(State of health,SOH)对于储能系统安全稳定运行至关重要。然而,由于电池SOH无法直接测量,并且其衰减又受到多种因素影响,使全寿命周期退化过程呈现非线性,导致电池SOH估计困难。因此,提出一种基于恒压充电...准确掌握锂离子电池健康状态(State of health,SOH)对于储能系统安全稳定运行至关重要。然而,由于电池SOH无法直接测量,并且其衰减又受到多种因素影响,使全寿命周期退化过程呈现非线性,导致电池SOH估计困难。因此,提出一种基于恒压充电数据与堆叠模型的锂离子电池SOH估计方法。通过分析不同循环周期下恒压充电阶段电流数据,揭示其变化规律,并提出了以恒压充电阶段的充电时间、电流信息熵、电流曲线偏度和最大曲率构建健康特征组合。为了提高SOH估计模型的泛化能力,根据健康特征组合设计了包含4种不同原理机器学习估计器的堆叠模型,通过双层多模型融合提高了SOH估计结果的准确性。试验结果验证了所提健康特征组合及模型能实现对电池SOH的准确估计。展开更多
针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term m...针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的锂电池SOH估计方法。首先,从电池充电阶段数据中提取五类HFs。接着,利用核主成分分析法(kernel principal component analysis,KPCA)获取HFs的关键健康因子。最后,应用GWO-BiLSTM模型对关键健康因子和SOH之间的映射关系进行动态建模,实现锂电池SOH的估计。利用NASA电池老化数据集进行验证,结果表明,所提出方法能够准确估计锂电池的SOH,均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。展开更多
文摘针对现存锂电池组内串联单体锂电池健康状态(state of health,SOH)均衡方案需要集中控制器和全局通信、系统建设成本居高不下等问题,提出一种基于一致性算法的锂电池组内单体锂电池SOH主动均衡方案。分析了SOH参数、放电深度(depth of discharge,DOD)和有功功率三者之间的内在联系,设计了有功功率分配和控制算法切换法则。利用一致性算法求解DOD平均值,以达到在无需集中控制器和减少通信信号数量的前提下,实现锂电池组内单体锂电池SOH均衡的控制目标,提高锂电池容量利用率,降低锂电池维护成本。最后,Matlab/Simulink仿真结果说明,所提方案在负荷变化、通信中断、锂电池块数增加和DOD出现测量误差的情况下,均能使锂电池组内串联单体锂电池SOH自均衡。
文摘针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。
文摘准确掌握锂离子电池健康状态(State of health,SOH)对于储能系统安全稳定运行至关重要。然而,由于电池SOH无法直接测量,并且其衰减又受到多种因素影响,使全寿命周期退化过程呈现非线性,导致电池SOH估计困难。因此,提出一种基于恒压充电数据与堆叠模型的锂离子电池SOH估计方法。通过分析不同循环周期下恒压充电阶段电流数据,揭示其变化规律,并提出了以恒压充电阶段的充电时间、电流信息熵、电流曲线偏度和最大曲率构建健康特征组合。为了提高SOH估计模型的泛化能力,根据健康特征组合设计了包含4种不同原理机器学习估计器的堆叠模型,通过双层多模型融合提高了SOH估计结果的准确性。试验结果验证了所提健康特征组合及模型能实现对电池SOH的准确估计。
文摘针对锂电池健康状态(state of health,SOH)估计过程中健康特征(health features,HFs)提取单一、估计精度较低等问题,提出一种基于充电阶段数据与灰狼优化(grey wolf optimizer,GWO)算法-双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的锂电池SOH估计方法。首先,从电池充电阶段数据中提取五类HFs。接着,利用核主成分分析法(kernel principal component analysis,KPCA)获取HFs的关键健康因子。最后,应用GWO-BiLSTM模型对关键健康因子和SOH之间的映射关系进行动态建模,实现锂电池SOH的估计。利用NASA电池老化数据集进行验证,结果表明,所提出方法能够准确估计锂电池的SOH,均方根误差保持在1%以内,具有较高的估计精度和鲁棒性。