期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
基于Stacking集成学习模型的苹果树逐日蒸散量模拟研究 被引量:1
1
作者 王娜娜 毕远杰 +2 位作者 何苗 郭向红 雷涛 《水电能源科学》 北大核心 2024年第2期207-211,共5页
为准确模拟苹果树逐日蒸散量,以支持向量机(SVM)、多层感知机(MLP)、随机森林(RF)和梯度提升决策树(GBDT)为初级学习器,以多元线性回归(MLR)为次级学习器,基于Stacking策略建立集成学习模型(LSM),将LSM模型的模拟精度与MLR、SVM、MLP、R... 为准确模拟苹果树逐日蒸散量,以支持向量机(SVM)、多层感知机(MLP)、随机森林(RF)和梯度提升决策树(GBDT)为初级学习器,以多元线性回归(MLR)为次级学习器,基于Stacking策略建立集成学习模型(LSM),将LSM模型的模拟精度与MLR、SVM、MLP、RF、GBDT模型的模拟精度进行对比。结果表明,影响苹果树蒸散量的主要因子为日平均太阳辐射、相对湿度、风速、温度和日序数,最大互信息值分别为0.97、0.72、0.63、0.62、0.60,表层土壤温度及土壤含水率对蒸散量的影响较小。相比于MLR、SVM、MLP、RF、GBDT模型,LSM模型的模拟精度最高,MLR模型的模拟精度最低;使用日平均太阳辐射、相对湿度、风速、温度及日序数5个特征参数在准确模拟苹果树蒸散量的同时,还能降低特征的获取成本。研究结果可为苹果树逐日蒸散量的精准模拟提供有效方法。 展开更多
关键词 作物蒸散量 苹果树 机器学习 stacking集成学习 模拟精度 影响因子
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
2
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 stacking 集成模型 客观评价
在线阅读 下载PDF
基于特征过滤法和Stacking集成学习的无人机影像作物精细分类
3
作者 刘朝辉 杨风暴 张琳 《现代电子技术》 北大核心 2025年第7期1-10,共10页
针对目前多种典型作物分类中特征冗余导致同科作物混淆、分类精度低的问题,文中提出一种结合特征过滤法筛选特征和Stacking集成学习的作物精细分类方法。首先,结合敏感波段构造新型植被指数并进行阈值分割,实现作物区域提取;然后,提取... 针对目前多种典型作物分类中特征冗余导致同科作物混淆、分类精度低的问题,文中提出一种结合特征过滤法筛选特征和Stacking集成学习的作物精细分类方法。首先,结合敏感波段构造新型植被指数并进行阈值分割,实现作物区域提取;然后,提取不同作物的颜色和纹理特征,进而计算单类作物特征系数和作物间特征差异系数,实现各典型作物的分类特征过滤法优选;最后,构建融合多种机器学习算法的Stacking集成学习作物分类模型,其中第一层的基学习器选择随机森林、支持向量机、K⁃最近邻算法,第二层的元学习器选择逻辑回归模型,实现多种典型作物精细分类。实验结果表明,所提方法对7种典型作物的总体分类精度和Kappa系数分别为85.2%和83.34%,相比于未进行特征选择的分类结果分别提升了2.18%和3.68%,具有较高的分类精度,为多种典型作物的精细分类提供了新方法。 展开更多
关键词 作物分类 特征选择 stacking集成学习 植被指数 阈值分割 衍生特征
在线阅读 下载PDF
基于Stacking集成学习的热轧带钢凸度诊断模型
4
作者 张殿华 李贺 +3 位作者 武文腾 霍光帆 孙杰 彭文 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期3673-3682,共10页
在热连轧生产过程中,凸度是重要的质量指标,过程数据的非平衡性限制了数据驱动模型的预测效果,为提高模型的预测精度,提出一种融合SMOTE和Stacking集成算法的热轧带钢凸度诊断模型。首先,采用SMOTE过采样方法处理凸度相关数据集,降低数... 在热连轧生产过程中,凸度是重要的质量指标,过程数据的非平衡性限制了数据驱动模型的预测效果,为提高模型的预测精度,提出一种融合SMOTE和Stacking集成算法的热轧带钢凸度诊断模型。首先,采用SMOTE过采样方法处理凸度相关数据集,降低数据非平衡分布导致的影响;然后,构建以轻量级梯度提升机(LightGBM)、支持向量机(SVM)、K近邻(KNN)和随机森林(RF)为基学习器,逻辑回归(LR)为元学习器的Stacking集成模型,最后,使用某2160 mm热轧带钢实际生产数据进行模型验证。研究结果表明,诊断模型的准确率、少数类召回率、平衡F分数、几何平均值和ROC曲线下面积分别为0.9580、0.9595、0.9573、0.9589和0.9579,与XGBoost、LightGBM、KNN、SVM和随机森林模型对比,预测效果最优,证明了Stacking集成算法能够有效增强诊断模型的泛化能力,具有优良的诊断性能。 展开更多
关键词 带钢凸度诊断 stacking集成模型 非平衡数据 SMOTE
在线阅读 下载PDF
VMD-Stacking集成学习的多特征变量短期负荷预测模型 被引量:2
5
作者 王士彬 何鑫 +2 位作者 余成波 张未 陈佳 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第2期218-224,共7页
针对当前短期电力负荷预测结果准确度不够高的问题,提出一种由变分模态分解(variational modal decomposition, VMD)和Stacking集成学习框架组合的多特征变量短期负荷预测模型。在预测前使用VMD算法将负荷数据分解,然后加入对模型重要... 针对当前短期电力负荷预测结果准确度不够高的问题,提出一种由变分模态分解(variational modal decomposition, VMD)和Stacking集成学习框架组合的多特征变量短期负荷预测模型。在预测前使用VMD算法将负荷数据分解,然后加入对模型重要性较高的特征变量,再建立由轻量级梯度提升机(light gradient boosting machine, LightGBM)与极限梯度提升机(extreme gradient boosting, XGBoost)融合的Stacking集成学习预测模型,并比较不同天气情况下对预测模型准确度的影响。经实际算例对比验证表明:多特征的VMD-Stacking集成学习预测模型的误差较小。采用VMD算法分解历史负荷序列,分解后子模态分量的周期性体现了出来,让模型预测波动性较大的负荷时更容易;温度、天气、农历和节假日情况等影响负荷变化的关键因素有被考虑到,模型的准确度得以提高;Stacking集成学习模型对各算法取长补短,泛化能力增强,预测的准确度高于单一模型。 展开更多
关键词 短期电力负荷预测 变分模态分解 stacking集成学习 多特征变量 轻量级梯度提升机 极限梯度提升机
在线阅读 下载PDF
基于集成学习算法的尾气处理装置SO_(2)排放预测模型
6
作者 张宝东 杜支文 +1 位作者 闫昭 侯磊 《石油与天然气化工》 北大核心 2025年第1期9-17,共9页
目的精确预测天然气净化厂尾气处理装置烟气中二氧化硫(SO_(2))排放质量浓度。方法利用某天然气净化厂2018—2023年每小时44000条尾气处理日报数据构建数据集,进行数据处理,并利用重要性分析方法提取27个重要特征。针对烟气中SO_(2)排... 目的精确预测天然气净化厂尾气处理装置烟气中二氧化硫(SO_(2))排放质量浓度。方法利用某天然气净化厂2018—2023年每小时44000条尾气处理日报数据构建数据集,进行数据处理,并利用重要性分析方法提取27个重要特征。针对烟气中SO_(2)排放质量浓度的预测任务,采用了随机森林(Random Forest)、梯度提升(Gradient Boost)和极值梯度提升(XGBoost)3种集成学习算法,以及基于径向基(RBF)内核的支持向量机(SVM)替代仿真模型进行建模。结果3种集成学习模型比SVM单模型的预测效果更为精准,而Random Forest模型展现出最佳性能,决定系数为0.89,均方误差为1250.59,相对于8800个真实测试集样本数据,其预测偏差为9.86%,相比于Random Forest模型(数据未处理),其决定系数提高了61.82%。结论Random Forest模型在准确预测尾气处理装置SO_(2)排放质量浓度方面具有实际生产应用价值,可为后续尾气处理装置的工艺参数优化提供可靠的模型支持。 展开更多
关键词 天然气净化 硫磺回收 尾气处理 二氧化硫排放 预测模型 集成学习算法
在线阅读 下载PDF
基于Stacking算法集成学习的页岩油储层总有机碳含量评价方法
7
作者 宋延杰 刘英杰 +1 位作者 唐晓敏 张兆谦 《测井技术》 CAS 2024年第2期163-178,共16页
总有机碳含量(TOC)是页岩油储层评价的重要参数,而传统总有机碳含量测井评价方法精度较低且普适性较差,机器学习模型在一定程度上提高了总有机碳含量预测精度,但结果存在不稳定性。为了进一步提高页岩油储层总有机碳含量预测精度,基于... 总有机碳含量(TOC)是页岩油储层评价的重要参数,而传统总有机碳含量测井评价方法精度较低且普适性较差,机器学习模型在一定程度上提高了总有机碳含量预测精度,但结果存在不稳定性。为了进一步提高页岩油储层总有机碳含量预测精度,基于有机质岩石物理特征和不同总有机碳含量测井响应特征的深入分析,优选出深侧向电阻率、声波时差、补偿中子和密度测井曲线作为总有机碳含量的敏感测井响应,并将其作为输入特征,以岩心分析总有机碳含量作为期望输出值,分别建立了决策树模型、支持向量回归机模型、BP(Back Propagation)神经网络模型,并建立了以决策树模型为基模型、支持向量回归机模型为元模型的Stacking算法集成学习模型。利用B油田A区块的岩心样本数据和实际井数据对不同模型预测总有机碳含量结果进行了验证,结果表明,基于Stacking算法的集成学习模型的总有机碳含量预测精度最高,相较于决策树模型、支持向量回归机模型、BP神经网络模型和改进的ΔlgR法,预测精度有较大提高。因此,基于Stacking算法的集成学习模型为该研究区最有效的总有机碳含量计算方法,这为准确地评估页岩油储层的生烃潜力、确保页岩油储层的高效开采及资源利用奠定了基础。 展开更多
关键词 页岩油储层评价 总有机碳含量 决策树 支持向量回归机 stacking算法 集成学习
在线阅读 下载PDF
基于Stacking集成学习的轨道交通短时客流量预测研究 被引量:1
8
作者 王菊娇 阙凡博 《西部交通科技》 2024年第9期157-159,166,共4页
针对轨道交通客流量预测问题,文章以南宁市轨道交通1号线为对象,提出了一种基于多模型Stacking集成学习的方法,对客流量进行预测并进行评估。通过融合XGBoost、LightGBM和LSTM模型,利用各模型优势互补,降低过拟合风险,提高预测准确性和... 针对轨道交通客流量预测问题,文章以南宁市轨道交通1号线为对象,提出了一种基于多模型Stacking集成学习的方法,对客流量进行预测并进行评估。通过融合XGBoost、LightGBM和LSTM模型,利用各模型优势互补,降低过拟合风险,提高预测准确性和泛化能力。结果显示:Stacking模型在客流量预测中表现优异,与实际值接近,评价指标表现良好,可有效提高运营效率和管理决策水平。 展开更多
关键词 轨道交通 客流量预测 stacking集成学习
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
9
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 模型 stacking融合
在线阅读 下载PDF
基于Stacking集成学习的远程资源传输负荷预测
10
作者 商娟叶 《信息技术》 2024年第6期94-99,104,共7页
传统电网远程资源传输负荷预测方法忽略了对资源的集成训练,导致电网负荷预测结果与实际值偏差较大。为此,提出基于Stacking集成学习的远程资源传输负荷预测方法。构建Stacking集成学习模型,同时通过长短时记忆网络构建Stacking-LSTM网... 传统电网远程资源传输负荷预测方法忽略了对资源的集成训练,导致电网负荷预测结果与实际值偏差较大。为此,提出基于Stacking集成学习的远程资源传输负荷预测方法。构建Stacking集成学习模型,同时通过长短时记忆网络构建Stacking-LSTM网络混合模型,利用时间滑动窗口构建影响因素数据特征图,并将其输入网络混合模型,利用Stacking基础学习训练层实现训练,并将训练结果输入LSTM网络层,完成电网远程资源传输负荷预测。实验结果表明:该方法的网络收敛速度较快,获取特征的贡献度较高,且负荷预测结果接近实际值,可以较好地跟踪负荷变化情况。 展开更多
关键词 stacking集成学习 远程资源传输 负荷预测 长短时记忆 滑动窗口
在线阅读 下载PDF
基于Stacking集成学习的机械钻速预测方法 被引量:2
11
作者 高云伟 罗利民 +3 位作者 薛凤龙 刘洋 严昊 郑双进 《石油机械》 北大核心 2024年第5期17-24,52,共9页
机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集... 机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集成策略融合K近邻算法(KNN)、支持向量机算法(SVM)和随机森林算法(RF)进行预测验证。预测验证结果显示,分类准确度不高。运用遗传算法进行各基础模型参数优化。优化后,基于KNN、SVM、RF及Stacking集成4种算法,预测机械钻速准确率分别为73.7%、78.9%、81.6%及97.4%,其中Stacking集成模型预测准确率最高。基于Stacking集成学习的机械钻速预测方法开发了机械钻速预测软件,运用软件预测其他2套施工参数下的机械钻速,结果表明,预测机械钻速与实际机械钻速一致,且性能稳定,表明该模型拥有较强的泛化性和较高的预测精度。该智能算法可为新疆工区的该油田机械钻速预测与钻井施工参数优化提供一种新手段。 展开更多
关键词 机械钻速 预测模型 stacking集成学习 机器学习 施工参数优化 预测验证
在线阅读 下载PDF
融合BMA的Stacking模型对用户网络购物行为的预测
12
作者 刘帅 《信息技术与信息化》 2025年第2期91-94,共4页
随着互联网和电子商务的蓬勃发展,网络购物成为人们生活的常态。精准预测用户的网络购物行为,能为相关行业提供有价值的决策参考。基于此,文章基于集成学习法进行预测,为改进传统Stacking模型中只能结合基分类器预测结果的情况,在构建St... 随着互联网和电子商务的蓬勃发展,网络购物成为人们生活的常态。精准预测用户的网络购物行为,能为相关行业提供有价值的决策参考。基于此,文章基于集成学习法进行预测,为改进传统Stacking模型中只能结合基分类器预测结果的情况,在构建Stacking模型时融入贝叶斯模型平均(bayesian model averaging,BMA),体现各基分类器对预测结果的贡献程度,有效结合多个模型优势。利用累积重要性筛选出有代表性的特征变量,评估模型性能以确定合适的基分类器组合,并结合逻辑回归元学习器构建最终的Stacking模型,基于构建好的模型融合BMA进行预测。实验结果表明,融入BMA后的Stacking模型预测用户网络购物行为效果较好。 展开更多
关键词 用户网络购物 集成学习 stacking BMA 贡献程度
在线阅读 下载PDF
基于Stacking集成学习的分频地震属性融合储层预测方法
13
作者 刘磊 李伟 +3 位作者 杜玉山 岳大力 张雪婷 侯加根 《石油地球物理勘探》 EI CSCD 北大核心 2024年第1期12-22,共11页
地震属性蕴含大量储层信息,融合多种地震属性可提高储层预测精度。由于地下地质结构复杂、非均质性强,依据单一的地震属性融合方法难以精细刻画储层特征。为此,提出了一种基于Stacking集成学习的分频地震属性融合储层预测方法。该方法... 地震属性蕴含大量储层信息,融合多种地震属性可提高储层预测精度。由于地下地质结构复杂、非均质性强,依据单一的地震属性融合方法难以精细刻画储层特征。为此,提出了一种基于Stacking集成学习的分频地震属性融合储层预测方法。该方法主要包括3个部分:①根据不同厚度储层的振幅与频率关系,利用多个频率的地震信息,降低地震属性的多解性;②联合相关性分析和无监督聚类技术优选地震属性,剔除冗余属性特征;③利用能够综合多个差异化模型优势的Stacking集成学习模型,融合不同频段的地震属性,提高地震属性的解释精度。将该方法用于渤海湾盆地埕岛油田,并使用线性公式定量分析法进一步评估Stacking模型的泛化效果。结果显示:与单类预测模型相比,Stacking模型的综合预测性能和可靠性均有显著提升;对应的地震属性融合结果高值区形态更加清晰,融合属性与砂体厚度的相关系数可达到0.92,这表明该方法具有良好的应用前景。 展开更多
关键词 地震属性 储层预测 stacking 集成学习 分频 智能融合
在线阅读 下载PDF
基于MIC-iAFF-Stacking集成学习的航空器滑出时间预测 被引量:1
14
作者 李浩 卢朝阳 +2 位作者 谈翌平 苟利鹏 张慧子 《交通运输工程与信息学报》 2024年第4期142-153,共12页
针对当前单一模型预测航空器滑出时间精度提升存在瓶颈的问题,提出一种结合最大互信息系数(Maximal Information Coefficient,MIC)的迭代注意力特征融合模块(iterative Attentional Feature Fusion,iAFF)和Stacking集成学习框架组合的... 针对当前单一模型预测航空器滑出时间精度提升存在瓶颈的问题,提出一种结合最大互信息系数(Maximal Information Coefficient,MIC)的迭代注意力特征融合模块(iterative Attentional Feature Fusion,iAFF)和Stacking集成学习框架组合的航空器滑出时间预测模型。首先利用MIC提取出与滑出时间相关性较高的因素作为模型原始特征序列;然后以支持向量回归(SVR)、随机森林(RF)、多层感知机(MLP)和极限梯度提升机(XGBoost)为基学习器模型对原始特征进行特征构造,并利用iAFF模块对基学习器得到的构造特征和原始特征进行特征融合,通过MLP对融合后的特征进行学习,最终得到预测滑出时间。经实际算例对比验证表明,与单一模型相比,MIC-iAFF-Stacking集成学习模型在±2、±3、±5 min误差范围内的预测精度分别提升了6.14%、6.40%、2.31%,证明了该模型在滑出时间预测中的有效性。 展开更多
关键词 航空运输 离港滑行时间 最大互信息系数 注意力特征融合 stacking集成学习
在线阅读 下载PDF
基于Stacking集成学习的盾构掘进地表沉降预测方法
15
作者 郑一鸣 李刚 +2 位作者 季军 张孟喜 吴惠明 《隧道建设(中英文)》 CSCD 北大核心 2024年第11期2233-2240,共8页
为提高盾构施工中地表最终沉降预测模型的准确性和泛化性,结合主成分分析(PCA)和多层堆叠集成算法(Multi-layer Stacking)提出PCA-Stacking盾构掘进地表沉降预测方法。该方法利用PCA算法对盾构掘进过程中产生的大量数据进行处理,以减少... 为提高盾构施工中地表最终沉降预测模型的准确性和泛化性,结合主成分分析(PCA)和多层堆叠集成算法(Multi-layer Stacking)提出PCA-Stacking盾构掘进地表沉降预测方法。该方法利用PCA算法对盾构掘进过程中产生的大量数据进行处理,以减少特征维度并提取关键信息;此外,通过多层Stacking算法将多个异质模型进行融合,在提高模型预测性能的同时避免子模型间的优化比选。依托上海市北横通道超大直径盾构隧道工程,对盾构工程中的多源数据进行处理,对比PCA处理前后Stacking模型的性能,并将PCA-Stacking模型与RF、XGBoost模型进行对比。研究结果表明:1)PCA处理前后,Stacking模型的R 2分别为0.792和0.831,PCA对Stacking模型性能有一定提高;2)超参数优化后,RF和XGBoost的R 2分别为0.748和0.612,其性能弱于未进行超参数优化的PCA-Stacking;3)PCA-Stacking模型对地表隆起、沉降变化高度都具有良好的预测能力;4)在盾构掘进地表沉降预测方面,异质子模型的PCA-Stacking算法优于同质子模型的集成算法。 展开更多
关键词 盾构隧道 地表沉降 机器学习 stacking集成学习 主成分分析(PCA)
在线阅读 下载PDF
基于Stacking集成模型的煤层瓦斯含量预测研究 被引量:1
16
作者 王琳 周捷 +2 位作者 林海飞 李文静 张宇少 《煤炭工程》 北大核心 2024年第4期125-132,共8页
煤层瓦斯含量精准预测是预防井下瓦斯灾害事故的重要环节,为提高井下瓦斯含量预测的科学性及准确性,获取不同矿区的41组数据,包括瓦斯含量、埋深、煤厚、水分、灰分以及挥发分。对最小二乘支持向量机(LSSVM)、深度信念网络(DBN)、长短... 煤层瓦斯含量精准预测是预防井下瓦斯灾害事故的重要环节,为提高井下瓦斯含量预测的科学性及准确性,获取不同矿区的41组数据,包括瓦斯含量、埋深、煤厚、水分、灰分以及挥发分。对最小二乘支持向量机(LSSVM)、深度信念网络(DBN)、长短期记忆(LSTM)、Elman神经网络及自适应增强(Adaboost)五种算法进行初选,得到最优基模型为最小支持二乘向量机、自适应增强以及深度信念网络。通过基模型集成得到7种瓦斯含量预测模型,得到Stacking-LSSVM-Adaboost、Adaboost、Stacking-Adaboost-DBN和Stacking-LSSVM-Adaboost-DBN四种模型为优选模型。采用判定系数、平均绝对误差、均方根误差以及平均绝对百分比误差四种预测评价指标对优选出的四种模型进行综合评估,选择MAE<0.2、RMSE<0.3且MAPE<10的模型作为最终瓦斯含量预测模型。结果表明,Stacking-LSSVM-Adaboost-DBN集成模型判定系数为0.951,MAE、RMSE和MAPE分别为0.170、0.204及7.412,所建立模型拥有较高预测精度,可为矿井瓦斯灾害防治提供一定依据。 展开更多
关键词 瓦斯含量预测 stacking集成 五折交叉验证 模型优选 模型评价
在线阅读 下载PDF
基于残差注意力自适应去噪网络和Stacking集成学习的局部放电故障诊断
17
作者 廖晓青 陈历 +3 位作者 许建远 金宝权 姜自超 刘俊峰 《电子技术应用》 2024年第11期66-73,共8页
针对传统局部放电(Partial Discharge,PD)故障诊断方法在处理复杂含噪PD信号存在局限性并依赖于人工去噪和专家经验,难以学习到PD特征多样化表达等问题,分别提出残差注意力自适应去噪网络(Residual Attention Adaptive Denoising Networ... 针对传统局部放电(Partial Discharge,PD)故障诊断方法在处理复杂含噪PD信号存在局限性并依赖于人工去噪和专家经验,难以学习到PD特征多样化表达等问题,分别提出残差注意力自适应去噪网络(Residual Attention Adaptive Denoising Network,RAADNet)和基于Stacking集成学习的PD故障诊断模型。RAADNet基于残差网络结构设计,通过集成CAM注意力机制和软阈值函数实现自适应去噪;Stacking集成模型的基学习器分别由基于卷积神经网络的RAADNet、基于多头自注意力机制的Transformer以及基于Boosting集成策略的XGBoost多个差异化模型共同构建构成。实验结果表明,提出的RAADNet优于其他先进方法,识别准确率达到93.99%,Stacking集成模型则通过学习多样化特征表达,进一步提高模型性能,达到96.79%识别准确率。 展开更多
关键词 气体绝缘开关柜 局部放电 stacking集成学习 卷积神经网络 TRANSFORMER
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
18
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
基于Stacking集成学习的注塑件尺寸预测方法 被引量:9
19
作者 宋建 王文龙 +1 位作者 李东 梁家睿 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第6期19-26,共8页
机器学习算法能够处理高维和多变量数据,并在复杂和动态环境中提取数据中的隐藏关系,在注塑件尺寸预测中具有很好的应用前景。注塑件尺寸预测系统的性能取决于机器学习算法的选择,然而,传统的机器学习算法在实际应用中不能达到很好的预... 机器学习算法能够处理高维和多变量数据,并在复杂和动态环境中提取数据中的隐藏关系,在注塑件尺寸预测中具有很好的应用前景。注塑件尺寸预测系统的性能取决于机器学习算法的选择,然而,传统的机器学习算法在实际应用中不能达到很好的预测效果。为此,文中提出了一种基于Stacking集成学习的融合模型,首先采用优化的特征选择方法获得最佳的特征数量,然后通过对比分析单一模型的关联度和预测效果、不同Stacking学习器组合方式下模型的预测效果,得到预测性能最佳的模型,该模型的基学习器为极端梯度提升树(XGB)、轻量级梯度提升树(LGB)、核岭回归,元学习器为弹性网络回归。测试结果表明:该模型在注塑件尺寸预测方面的均方根误差和平均绝对误差较XGB和LGB模型分别降低了16%和20%左右,较传统支持向量机模型分别降低了45.22%和46.48%,同时模型预测结果可根据特征解释回溯到实际生产中,为制造工艺和工序的优化提供决策指导。 展开更多
关键词 注塑成型 预测 机器学习 集成学习 stacking
在线阅读 下载PDF
基于集成学习算法的全国降水量分布制图研究
20
作者 王妍 赵文旻 +4 位作者 虞亚楠 李林 任杰 赵玲妹 李珈慧 《中国农村水利水电》 北大核心 2025年第3期55-60,70,共7页
针对传统空间插值模型对样本数据的依赖性及其预测偏差的缺陷,提出一种新的降水量空间分布数字制图方法——集成学习(Ensemble Learning, EL)算法。基于降水量分布随多元地理环境因素(地理位置、地表覆盖、地形特征)变化的假设,以中国地... 针对传统空间插值模型对样本数据的依赖性及其预测偏差的缺陷,提出一种新的降水量空间分布数字制图方法——集成学习(Ensemble Learning, EL)算法。基于降水量分布随多元地理环境因素(地理位置、地表覆盖、地形特征)变化的假设,以中国地区2019年的618个气象站点年降水量观测资料为样本数据,建立基于EL降水量空间制图模型,该EL模型以广义线性回归(Generalized Linear Regression, GLM)模型为元学习机来整合样条函数(Anusplin)、地理加权(Geographically Weighted Regression, GWR)和高斯过程(Gaussian Process Regression,GPR)模型产生的初级预测,最后制取全国1 km空间分辨率的降水量栅格面。结果显示,EL模型取得较可靠的预测结果,模型验证精度决定系数(Determination Coefficient, R2)达0.96,均方根误差(Root Mean Square Error,RMSE)仅为55.17 mm;EL模型性能优于其他模型,比传统的GPR、GWR和Anusplin模型的RMSE分别降低了10.95%、16.54%、18.02%。本文提出的EL模型在大尺度范围的站点式气候要素空间制图领域中显示出良好的应用潜力。 展开更多
关键词 集成学习 单一模型 降水量 空间制图
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部