期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
基于stacking融合机制的自动驾驶伦理决策模型 被引量:1
1
作者 刘国满 盛敬 罗玉峰 《计算机应用研究》 北大核心 2025年第2期462-468,共7页
虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽... 虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽车在伦理困境下能够作出合理决策。针对以上问题,设计了基于stacking融合机制的伦理决策模型,对机器学习和深度学习进行深度融合。一方面将基于特征依赖关系的朴素贝叶斯模型(ACNB)、加权平均一阶贝叶斯模型(WADOE)和自适应模糊模型(AFD)作为stacking融合机制上基学习器。依据先前准确率,设定各自模型权重,再运用加权平均法,计算决策结果。然后将该决策结果作为元学习器训练集,对元学习器进行训练,构建stacking融合模型。最后,运用验证集分别对深度学习模型和stacking融合模型进行验证,依据验证中平均损失率和准确率以及测试中正确率,评价和比较深度学习模型和stacking融合机制决策效果。结果表明,深度学习模型平均损失率最小为0.64,最大平均准确率为0.7,最高正确率为0.61。stacking融合机制平均损失率最小为0.35,最大平均准确率为0.90,最高正确率为0.75,说明stacking融合机制相对于深度学习模型,决策结果准确率和正确率方面有了较大改进。 展开更多
关键词 自动驾驶汽车 伦理决策 stacking融合机制 深度学习
在线阅读 下载PDF
基于Stacking多模型融合的颗粒饲料质量预测方法
2
作者 吴俊华 王粮局 +4 位作者 徐际童 邹方磊 王威 郭绍永 王红英 《农业工程学报》 北大核心 2025年第15期318-326,共9页
针对颗粒饲料产品质量受饲料配方、工艺参数、设备参数以及环境参数等多重因素影响,导致颗粒饲料质量管控困难的问题,该研究提出一种基于Stacking多模型融合的颗粒饲料质量预测方法。以实际生产线上采集的数据为基础,采用随机森林算法... 针对颗粒饲料产品质量受饲料配方、工艺参数、设备参数以及环境参数等多重因素影响,导致颗粒饲料质量管控困难的问题,该研究提出一种基于Stacking多模型融合的颗粒饲料质量预测方法。以实际生产线上采集的数据为基础,采用随机森林算法和最大互信息系数进行特征筛选,构建融合多个机器学习算法的Stacking预测模型。结果表明,Stacking多模型融合算法优于单一机器学习算法,预测的颗粒硬度、颗粒耐久性指数(pellet durability index,PDI)及生产率在测试集上的均方根误差分别是2.932 N、4.830%、0.465 t/h,较各自的最优单一模型分别降低了8.26%、5.48%和10.20%;进一步采用随机森林算法量化特征贡献度发现,颗粒硬度和PDI主要受饲料配方因素主导,累计贡献率分别为87.01%和88.94%;生产率主要由喂料频率决定,贡献率为42.94%。该研究为颗粒饲料质量的精准管控提供了一种新的技术方法,为提高饲料生产设备智能化水平、精细化技术水平提供了一定的理论依据。 展开更多
关键词 饲料 预测模型 特征选择 stacking模型融合 颗粒质量
在线阅读 下载PDF
基于改进Stacking多模型融合的高速公路隧道建设碳排放预测模型
3
作者 吴佳润 林宇亮 +1 位作者 邢浩 宁曦 《湖南大学学报(自然科学版)》 北大核心 2025年第5期57-65,共9页
隧道工程作为交通基础设施的重要组成部分,其建设过程中的碳排放问题日益受到关注.构建合理的隧道建设碳排放预测模型为控制隧道工程碳排放量、实现隧道减碳设计提供重要的科学依据.据此,以勐绿高速公路隧道工程建设为依托,考虑围岩级... 隧道工程作为交通基础设施的重要组成部分,其建设过程中的碳排放问题日益受到关注.构建合理的隧道建设碳排放预测模型为控制隧道工程碳排放量、实现隧道减碳设计提供重要的科学依据.据此,以勐绿高速公路隧道工程建设为依托,考虑围岩级别、隧道总长度等12个特征参数,建立了120个隧道不同衬砌设计每延米隧道建设碳排放样本.在传统Stacking算法的基础上,提出了一种改进Stacking多模型融合的隧道建设碳排放预测方法.通过残差赋权方式组合基学习器交叉验证得到的各训练模型,降低了对噪声的敏感性.并以原始训练集和组合基学习器的预测结果作为元学习器输入,保留了原始数据集的信息.研究结果表明,改进Stacking算法预测碳排放量与实际碳排放量的均方根误差(E_(RMSE))、平均绝对误差(E_(MAE))以及决定系数(R^(2))不仅优于3种单一基学习器,也优于传统Stacking算法.因此,推荐将改进Stacking算法用于隧道建设碳排放预测. 展开更多
关键词 隧道建设 碳排放 单一基学习 stacking模型融合 预测模型
在线阅读 下载PDF
基于Stacking集成学习的隧道突水危险预测模型
4
作者 卢佳乐 张念 +1 位作者 牛萌萌 万飞 《中国安全科学学报》 北大核心 2025年第4期137-144,共8页
为解决机器学习在隧道突水危险智能预测领域存在的模型较单一和预测精度不够理想等问题,提出一种基于Stacking集成学习方法的预测模型。首先,通过搜集95条隧道共计232组隧道突水灾害数据建立隧道突水灾害数据集,并进行数据预处理;然后,... 为解决机器学习在隧道突水危险智能预测领域存在的模型较单一和预测精度不够理想等问题,提出一种基于Stacking集成学习方法的预测模型。首先,通过搜集95条隧道共计232组隧道突水灾害数据建立隧道突水灾害数据集,并进行数据预处理;然后,选取3种基学习器和2种元学习器以不同组合方式训练出8组Stacking集成模型,并筛选出6组较优的集成模型;最后,使用网格搜索调参并结合5折交叉验证超参数调优模型,对比分析6组参数调优后的Stacking集成模型的预测结果,选择出最优Stacking集成模型。结果表明:采用Stacking集成学习方法改进最优单模型支持向量机(SVM)后得到SVM+朴素贝叶斯(NB)+线性回归(LR)集成模型,其精确率、召回率和F_(1)分数分别达到0.94、0.91和0.92,整体预测效果优于其他对比模型,可准确预测隧道突水危险等级。 展开更多
关键词 stacking集成学习 隧道突水 预测模型 危险等级 机器学习
在线阅读 下载PDF
考虑时空融合环境因子的土壤含水率机器学习反演模型优化
5
作者 李瑞平 赵建伟 +3 位作者 王福强 王欢 于欣 苗存立 《农业机械学报》 北大核心 2025年第8期370-379,共10页
植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地... 植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地表温度(LST)和植被干旱指数(TVDI)作为环境变量,结合土地利用类型、土壤质地、蒸散量、高程、坡向、坡度、原始影像植被干旱指数(TVDI)、归一化植被指数(NDVI)、地表温度(LST),以及气温、降水量和风速作为建模因子,构建基于多元线性逐步回归(MLSR)、随机森林(RF)和梯度提升机(GBM)3种方法的土壤含水率反演模型,并进行优化分析。研究结果表明:地表温度是影响土壤含水率空间变异性的关键影响因素(R为-0.46),其次为蒸散量(-0.43)、气温(-0.39)、融合后归一化植被指数(0.38)、原始归一化植被指数(0.36)、土地利用类型(0.31)、融合后干旱植被指数(-0.3)、原始干旱植被指数(-0.28)、降水量(0.27)、土壤质地(0.27)、坡向(-0.25)、高程(0.26)、坡度(-0.20)及风速(-0.20);MLSR表现出较强的模型线性处理能力。非线性处理中RF回归模型最稳定,GBM模型则具有最高的精确度,R^(2)为0.910,MAE、MSE及RMSE分别为2.12%、6.89%和2.62%;多元逐步回归方法在土壤含水率反演过程中预测准确率较低,显示出线性模型在处理复杂关系处理时的局限性;OL-STARFM融合方法提取的TVDI和NDVI与土壤含水率的相关系数分别为-0.41和0.38,均高于单一影像提取的植被指数与土壤含水率的相关性,并且有效提高了土壤含水率反演模型的精度,表明该方法在土壤含水率反演模型构建中的可行性,为获取连续的高时空分辨率影像进而有效连续监测土壤含水率提供了理论依据。 展开更多
关键词 土壤含水率 遥感反演模型 时空融合 环境因子 OL-STARFM 机器学习算法
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型 被引量:3
6
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 模型 stacking融合
在线阅读 下载PDF
基于Stacking融合模型的PHEV复合储能系统实时能量分配策略 被引量:1
7
作者 吴忠强 马博岩 《计量学报》 CSCD 北大核心 2024年第1期73-81,共9页
为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进... 为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进行训练,并综合GRU网络以及XGBoost算法,提出了一种Stacking集成学习框架下多模型融合的能量分配策略。仿真结果表明,与仅使用单一电池的储能系统相比,基于Stacking融合模型的实时能量分配系统在UDDS和US06两种循环工况下,电池峰值电流分别降低了48.7%和50.8%,有效削弱了电池的峰值电流,提升了电池的整体性能。 展开更多
关键词 电学计量 复合储能系统 插电式混合动力汽车 动态规划 XGBoost stacking融合模型
在线阅读 下载PDF
基于Stacking集成模型的膜下滴灌谷子作物系数预测
8
作者 马健涛 郭向红 +4 位作者 雷涛 白艳茹 高晓丽 张家晔 赵鹏帅 《南水北调与水利科技(中英文)》 北大核心 2025年第4期892-904,共13页
为准确模拟膜下滴灌不同水肥处理谷子作物系数(crop coefficient,K_(c)),以水肥有关K_(c)的双因素方差分析为前提,采用随机森林(random forest,RF)、类别提升(CatBoost)、轻量级梯度提升机(LightGBM)、支持向量机回归(support vector re... 为准确模拟膜下滴灌不同水肥处理谷子作物系数(crop coefficient,K_(c)),以水肥有关K_(c)的双因素方差分析为前提,采用随机森林(random forest,RF)、类别提升(CatBoost)、轻量级梯度提升机(LightGBM)、支持向量机回归(support vector regression,SVR)、深度学习(DL)作为次级机器学习模型,基于Stacking策略以多元线性回归构建集成元模型(linear stacking model,LSM)对不同水肥处理膜下滴灌谷子K_(c)进行预测,并进行模型间模拟结果精度比较。结果表明:不同水肥处理间K_(c)日际变化趋势基本相同,但灌水因素和氮肥施用量对K_(c)均有显著影响;在次级机器学习模型中,树类模型(RF、CatBoost与LightGBM)相对SVR和DL模型估测精度较好,而相比次级模型,LSM模型提高了谷子K_(c)的模拟精度;依赖日序数、太阳辐射强度、风速、日均水汽压和土壤含水率建立的LSM模型能够准确模拟膜下滴灌谷子K_(c),决定系数(R2)和均方根误差(root mean squared error, ERMS)分別为0.91和0.11,且当土壤含水率特征加入时模型误差明显降低。研究成果可为膜下滴灌田间水分精准管理提供技术支撑。 展开更多
关键词 滴灌 谷子 作物系数 机器学习模型 stacking集成模型
在线阅读 下载PDF
基于Stacking集成学习的分频地震属性融合储层预测方法 被引量:7
9
作者 刘磊 李伟 +3 位作者 杜玉山 岳大力 张雪婷 侯加根 《石油地球物理勘探》 EI CSCD 北大核心 2024年第1期12-22,共11页
地震属性蕴含大量储层信息,融合多种地震属性可提高储层预测精度。由于地下地质结构复杂、非均质性强,依据单一的地震属性融合方法难以精细刻画储层特征。为此,提出了一种基于Stacking集成学习的分频地震属性融合储层预测方法。该方法... 地震属性蕴含大量储层信息,融合多种地震属性可提高储层预测精度。由于地下地质结构复杂、非均质性强,依据单一的地震属性融合方法难以精细刻画储层特征。为此,提出了一种基于Stacking集成学习的分频地震属性融合储层预测方法。该方法主要包括3个部分:①根据不同厚度储层的振幅与频率关系,利用多个频率的地震信息,降低地震属性的多解性;②联合相关性分析和无监督聚类技术优选地震属性,剔除冗余属性特征;③利用能够综合多个差异化模型优势的Stacking集成学习模型,融合不同频段的地震属性,提高地震属性的解释精度。将该方法用于渤海湾盆地埕岛油田,并使用线性公式定量分析法进一步评估Stacking模型的泛化效果。结果显示:与单类预测模型相比,Stacking模型的综合预测性能和可靠性均有显著提升;对应的地震属性融合结果高值区形态更加清晰,融合属性与砂体厚度的相关系数可达到0.92,这表明该方法具有良好的应用前景。 展开更多
关键词 地震属性 储层预测 stacking 集成学习 分频 智能融合
在线阅读 下载PDF
坝基灌浆量预测ISSA-Stacking集成学习代理模型研究 被引量:8
10
作者 祝玉珊 王晓玲 +3 位作者 崔博 陈文龙 轩昕祺 余红玲 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第2期174-185,共12页
灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型... 灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型仅将单一模型结果进行加权平均,预测精度仍有待提高.为解决上述问题,本文提出一种ISSA-Stacking集成学习代理模型新方法用于灌浆量预测研究.首先,针对灌浆量预测具有数据量小、影响因素与灌浆量之间非线性关系复杂且预测不确定性较大等特性,基于Stacking集成学习策略,选取在小样本预测中表现优越的支持向量回归(SVR)、具有良好非线性拟合能力的BP神经网络(BPNN)和预测泛化性能及稳定性高的随机森林(RF)等算法作为基学习器,采用自适应学习和不确定性处理能力强的自适应神经模糊推理系统(ANFIS)作为元学习器以集成上述机器学习算法的优势,构建具有更优预测性能和泛化能力的Stacking集成学习方法作为代理模型;其次,为进一步提高模型预测精度,采用混沌理论和Lévy飞行策略改进的麻雀搜索算法(ISSA)对集成学习代理模型进行参数同步优化;最后,将所提ISSA-Stacking集成学习代理模型应用于某实际灌浆工程的灌浆量预测并与其他方法进行对比分析.结果表明,所提方法具有较高的预测精度,绝对平均误差仅为0.21 m^(3);与组合代理模型及单一代理模型(SVR、BPNN和RF)相比,平均精度分别提高24.34%、30.84%、32.68%和26.56%,为灌浆量预测提供了一种新思路. 展开更多
关键词 灌浆量预测 stacking集成学习方法 代理模型 麻雀搜索算法
在线阅读 下载PDF
多输入Stacking模型融合滚动轴承故障诊断 被引量:4
11
作者 白健 郝润芳 +3 位作者 程永强 闫文恒 徐博仁 郭立旺 《组合机床与自动化加工技术》 北大核心 2024年第5期131-135,140,共6页
针对现有单输入模型抗噪声能力不强、泛化能力不足的问题,提出了一种基于多输入Stacking模型融合的滚动轴承故障诊断方法。该方法对滚动轴承的原始振动信号进行预处理,分别对原始信号进行经验模态分解、变分模态分解和多分辨率分析,将3... 针对现有单输入模型抗噪声能力不强、泛化能力不足的问题,提出了一种基于多输入Stacking模型融合的滚动轴承故障诊断方法。该方法对滚动轴承的原始振动信号进行预处理,分别对原始信号进行经验模态分解、变分模态分解和多分辨率分析,将3种预处理后的信号输入到改进的卷积神经网络和改进的双输入卷积神经网络中进行训练及测试;各模型通过Stacking方法进行融合,以实现滚动轴承各种类型故障的诊断。结果表明,多输入Stacking模型融合方法的诊断性能优于传统的深度学习模型,在信噪比为5 dB的条件下达到了98.9%的诊断准确率。该模型的故障诊断性能稳定,具有很好的鲁棒性和泛化能力。 展开更多
关键词 故障诊断 模型融合 深度学习 滚动轴承
在线阅读 下载PDF
基于树结构Parzen估计器优化后两层Stacking模型的岩石脆性指数预测
12
作者 王芷含 温韬 《中国石油勘探》 北大核心 2025年第2期115-132,共18页
目前岩石脆性指数的评价方法众多,主要基于矿物组分或岩石力学性质开展评价,但多数评价指标获取费用高昂、耗时长。采用机器学习的手段,提出一种基于Stacking集成学习思想的岩石脆性指数预测方法,并行训练梯度提升决策树模型(GBDT)、随... 目前岩石脆性指数的评价方法众多,主要基于矿物组分或岩石力学性质开展评价,但多数评价指标获取费用高昂、耗时长。采用机器学习的手段,提出一种基于Stacking集成学习思想的岩石脆性指数预测方法,并行训练梯度提升决策树模型(GBDT)、随机森林模型(RF)、朴素决策树模型(DT)、支持向量回归模型(SVR)以及LightGBM模型等,并加以树结构Parzen估计器对各模型进行超参数调优后,串行使用XGBoost模型对基模型训练结果进行融合,从而实现各参数的快速寻优和岩石脆性指数的预测。结果表明,基于树结构Parzen估计器优化后的两层Stacking模型预测结果与使用的基模型预测结果相比具有明显优势,其可释方差得分(EVS)最高达到0.97,决定系数(R2)最高达到0.967,在同样的数据集表现中,该模型平均绝对误差(MAE)和均方根误差(RMSE)均最小,表明该模型能够在有监督学习的技术背景下较好地拟合岩石脆性指数的变化规律,验证了其在预测岩石脆性指数方面具有一定的实用价值。 展开更多
关键词 岩石脆性指数 stacking模型 集成学习 树结构Parzen估计器
在线阅读 下载PDF
基于多模型融合Stacking集成学习方式的负荷预测方法 被引量:197
13
作者 史佳琪 张建华 《中国电机工程学报》 EI CSCD 北大核心 2019年第14期4032-4041,共10页
人工智能及机器学习技术的快速发展,为负荷预测问题提供了崭新的解决思路。该文结合人工智能的前沿理论研究,提出一种基于多模型融合 Stacking 集成学习方式的负荷预测方法。考虑不同算法的数据观测与训练原理差异,充分发挥各个模型优势... 人工智能及机器学习技术的快速发展,为负荷预测问题提供了崭新的解决思路。该文结合人工智能的前沿理论研究,提出一种基于多模型融合 Stacking 集成学习方式的负荷预测方法。考虑不同算法的数据观测与训练原理差异,充分发挥各个模型优势,构建多个机器学习算法嵌入的 Stacking集成学习的负荷预测模型,模型的基学习器包含 XGBoost树集成算法和长短记忆网络算法。算例使用 ENTSO 中瑞士负荷数据对算法有效性进行了验证。预测结果表明,XGBoost、梯度决策树、随机森林模型能够通过自身模型的增益情况对输入数据的特征贡献度进行量化分析;Stacking中各个基学习器的学习能力越强,关联程度越低,模型预测效果越好;与传统单模型预测相比,基于多模型融合的Stacking 集成学习方式的负荷预测方法有着较高的预测精度。 展开更多
关键词 人工智能 负荷预测 模型融合 stacking集成学习 XGBoost 长短记忆网络
在线阅读 下载PDF
近红外光谱结合Stacking集成学习的猕猴桃糖度检测研究 被引量:2
14
作者 郭志强 张博涛 曾云流 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2932-2940,共9页
利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随... 利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随机采样结合T检验的奇异样本识别算法筛除异常值样本。利用SPXY算法按照4∶1的比例划分训练集和测试集。使用多元散射校正(MSC)、SG平滑滤波(SG)、趋势校正(DT)、矢量归一化(VN)、标准正态变换(SNV)五种方法对数据进行预处理。使用无信息变量消除法(UVE)、竞争性自适应重加权算法(CARS)和区间变量迭代空间收缩特征选择算法(iVISSA)提取特征波长,使用连续投影算法(SPA)进行二次提取,消除共线性变量。由于单一模型的泛化能力有限,为了扩大建模能力,设计了一种基于Stacking算法的集成学习模型。选择贝叶斯岭回归(BRR)、偏最小二乘回归(PLSR)、支持向量机回归(SVR)以及人工神经网络(ANN)作为基学习器,线性回归(LR)作为元学习器建立集成模型,比较不同组合下集成模型的性能。使用Pearson相关系数分析基学习器与集成模型之间的关系。结果表明:在五种预处理方法之中,矢量归一化的效果最佳。对预处理后的光谱进行特征波长提取,结果显示VN-CARS-PLSR模型效果最好,在测试集上的RP2为0.805,RMSEP为0.498。模型提取了177个特征波长,数据量相比于原始光谱减少了88.6%。通过Stacking算法对基学习器进行融合,对比不同的组合方式,发现PLS+SVR+ANN集成模型预测精度最高,RP2达到了0.853,RMSEP下降至0.433。通过Pearson相关系数分析了基学习器对集成模型性能的影响。研究表明,与单一模型相比,Stacking集成模型能够进行更加全面的建模,具有更高的泛化能力,该方法为猕猴桃糖度品质的无损检测提供了技术支持。 展开更多
关键词 猕猴桃 近红外光谱 糖度 stacking集成学习 模型融合
在线阅读 下载PDF
基于概念格融合模型的垃圾评论识别研究
15
作者 刘伟江 马小雯 王博 《现代情报》 北大核心 2025年第4期23-35,共13页
[目的/意义]为有效解决基元学习器和集成模型对单形态特定模式的依赖和局限,本文通过加大观察粒度将分类器拓展为可适应多形态混合模式的分类器,以期提升模型理解能力和分类能力。[方法/过程]本文以概念集替代原始特征,引入互斥概念集... [目的/意义]为有效解决基元学习器和集成模型对单形态特定模式的依赖和局限,本文通过加大观察粒度将分类器拓展为可适应多形态混合模式的分类器,以期提升模型理解能力和分类能力。[方法/过程]本文以概念集替代原始特征,引入互斥概念集和正交样本集的概念,对样本进行分离、归纳和融合,构建概念格融合模型,并从模型特质、模型能力、模型品质及过拟合4个方面对模型进行评价。[结果/结论]以亚马逊23971条评论为样本集的测算结果表明,概念格融合模型在准确性、稳定性、抗干扰性等方面都有较大提升,且模型评价结果表明该模型具有更佳的内在品质。 展开更多
关键词 垃圾评论 基元学习 集成模型 概念格 概念格融合模型
在线阅读 下载PDF
融合CNN和WDF模型的电商企业商品销量预测研究
16
作者 袁瑞萍 魏辉 +1 位作者 傅之家 李俊韬 《计算机工程与应用》 北大核心 2025年第2期335-343,共9页
为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特... 为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特征提取,降低冗余度和模型训练复杂度。提出一种改进的加权深度森林模型(WDF)进行商品销量预测。该模型依据各个子树的预测准确率计算每一级森林中该子树的权重以提高整体预测准确性,且相对于传统深度网络模型具有超参数少、可解释性强等优点。利用京东商品销量数据进行实验验证,结果表明:CNN-WDF融合模型在不同规模京东销售数据集上,预测准确率均显著高于其他对比模型,且随着数据集规模的扩大,预测准确率提高更加明显。 展开更多
关键词 商品销量预测 深度学习 融合模型 卷积神经网络 加权深度森林
在线阅读 下载PDF
基于大语言模型的中文多义词义项融合技术研究
17
作者 尹宝生 宗辰 《计算机科学》 北大核心 2025年第S1期53-59,共7页
针对中文的一词多义特点,基于现有各类汉语词典资源构建一个义项全面、描述规范的中文多义词知识库,对于汉语语义分析、智能问答、机器翻译以及大语言模型消歧能力调优和评估等具有重要意义。文中针对《现代汉语词典》和《现代汉语规范... 针对中文的一词多义特点,基于现有各类汉语词典资源构建一个义项全面、描述规范的中文多义词知识库,对于汉语语义分析、智能问答、机器翻译以及大语言模型消歧能力调优和评估等具有重要意义。文中针对《现代汉语词典》和《现代汉语规范词典》等资源整合过程中“词条义项含义相同但描述不同”等问题进行了深入分析,并创新性地提出了基于大语言模型和提示学习的多义词义项融合技术,即充分利用大语言模型对常识知识的分析理解和辅助决策能力,通过有效的问题分解策略和提示模版设计,以及义项关系交叉验证等手段完成了多义词义项的自动化融合工作。实验结果表明,在通过正态分布抽取50个多义词共754个义项对的评测数据上,基于上述算法的义项融合的正确率达96.26%,Dice系数为0.973 3。该项研究验证了利用大语言模型开展中文知识资源自动化加工的可行性和有效性,与传统依赖语言专家加工模式相比,在保证较高质量的前提下,显著提升了知识加工效率。 展开更多
关键词 多义词 义项融合 大语言模型 提示学习 中文信息处理
在线阅读 下载PDF
基于Stacking模型融合的深基坑地面沉降预测 被引量:26
18
作者 秦胜伍 张延庆 +4 位作者 张领帅 苗强 程秋实 苏刚 孙镜博 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2021年第5期1316-1323,共8页
为了提高机器学习对深基坑地面沉降的预测能力,本文提出了一种基于Stacking集成学习方式的多模型融合的地面沉降预测方法,并以深圳某深基坑为例,采用斯皮尔曼相关性系数对基坑地面沉降的影响因子进行筛选;运用筛选后的8个影响因子建立St... 为了提高机器学习对深基坑地面沉降的预测能力,本文提出了一种基于Stacking集成学习方式的多模型融合的地面沉降预测方法,并以深圳某深基坑为例,采用斯皮尔曼相关性系数对基坑地面沉降的影响因子进行筛选;运用筛选后的8个影响因子建立Stacking深基坑地面沉降预测模型,以验证该方法的适用性。结果表明:Stacking预测模型的平均绝对误差为0.34、平均绝对误差百分比为2.22%,均方根误差为0.13,相较于传统基模型(随机森林、支持向量机和人工神经网络),Stacking预测模型的平均绝对误差、平均绝对误差百分比和均方根误差值皆为最小。 展开更多
关键词 基坑施工 地表沉降 stacking模型融合 影响因子筛选
在线阅读 下载PDF
基于Stacking集成学习的机械钻速预测方法 被引量:3
19
作者 高云伟 罗利民 +3 位作者 薛凤龙 刘洋 严昊 郑双进 《石油机械》 北大核心 2024年第5期17-24,52,共9页
机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集... 机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集成策略融合K近邻算法(KNN)、支持向量机算法(SVM)和随机森林算法(RF)进行预测验证。预测验证结果显示,分类准确度不高。运用遗传算法进行各基础模型参数优化。优化后,基于KNN、SVM、RF及Stacking集成4种算法,预测机械钻速准确率分别为73.7%、78.9%、81.6%及97.4%,其中Stacking集成模型预测准确率最高。基于Stacking集成学习的机械钻速预测方法开发了机械钻速预测软件,运用软件预测其他2套施工参数下的机械钻速,结果表明,预测机械钻速与实际机械钻速一致,且性能稳定,表明该模型拥有较强的泛化性和较高的预测精度。该智能算法可为新疆工区的该油田机械钻速预测与钻井施工参数优化提供一种新手段。 展开更多
关键词 机械钻速 预测模型 stacking集成学习 机器学习 施工参数优化 预测验证
在线阅读 下载PDF
多模型Stacking集成学习的旋转机械故障诊断方法 被引量:9
20
作者 姜万录 赵岩 +3 位作者 李振宝 杨旭康 张士博 张淑清 《液压与气动》 北大核心 2023年第4期46-58,共13页
针对传统旋转机械故障诊断方法中单一机器学习模型出现的诊断精度低、泛化能力差且性能提升有限等问题,提出了通过Stacking框架异质集成多个机器学习模型对旋转机械进行故障诊断。首先利用小波包变换对旋转机械的原始振动信号进行特征提... 针对传统旋转机械故障诊断方法中单一机器学习模型出现的诊断精度低、泛化能力差且性能提升有限等问题,提出了通过Stacking框架异质集成多个机器学习模型对旋转机械进行故障诊断。首先利用小波包变换对旋转机械的原始振动信号进行特征提取;然后通过贝叶斯优化和网格搜索结合的方法调节各基学习器的超参数,采用DT、KNN、SVM及RF作为初级学习器,LR作为次级学习器构建Stacking异质集成学习模型;最后通过滚动轴承和液压泵故障模拟试验,将所提模型与单一模型、同质集成模型进行比较分析。试验结果表明,异质集成Stacking模型在不同旋转机械的故障诊断中均获得了最佳的整体诊断性能。异质集成是提高旋转机械故障诊断性能的有广阔应用前景的解决方案。 展开更多
关键词 stacking模型 异质集成学习 故障诊断 旋转机械
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部