针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高...针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。展开更多
针对传统机器学习方法不能有效地提取恶意代码的潜在特征,提出了基于栈式自编码(stacked auto encoder,SAE)的恶意代码分类算法。其次从大量训练样本中学习并提取恶意代码纹理图像特征、指令语句中的隐含特征;在此基础上,为提高特征选...针对传统机器学习方法不能有效地提取恶意代码的潜在特征,提出了基于栈式自编码(stacked auto encoder,SAE)的恶意代码分类算法。其次从大量训练样本中学习并提取恶意代码纹理图像特征、指令语句中的隐含特征;在此基础上,为提高特征选择对分类算法准确性的提高,将恶意代码纹理特征以及指令语句频度特征进行融合,训练栈式自编码器和softmax分类器。实验结果表明,基于恶意代码纹理特征以及指令频度特征,利用栈式自编码分类算法对恶意代码具有较好的分类能力,其分类准确率高于传统浅层机器学习模型(随机森林、支持向量机),相比随机森林的方法提高了2.474%,相比SVM的方法提高了1.235%。展开更多
文摘针对传统机器学习方法不能有效地提取恶意代码的潜在特征,提出了基于栈式自编码(stacked auto encoder,SAE)的恶意代码分类算法。其次从大量训练样本中学习并提取恶意代码纹理图像特征、指令语句中的隐含特征;在此基础上,为提高特征选择对分类算法准确性的提高,将恶意代码纹理特征以及指令语句频度特征进行融合,训练栈式自编码器和softmax分类器。实验结果表明,基于恶意代码纹理特征以及指令频度特征,利用栈式自编码分类算法对恶意代码具有较好的分类能力,其分类准确率高于传统浅层机器学习模型(随机森林、支持向量机),相比随机森林的方法提高了2.474%,相比SVM的方法提高了1.235%。