期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:1
1
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
改进Stacking集成学习的指纹识别算法 被引量:8
2
作者 苏赋 罗海波 《计算机工程与科学》 CSCD 北大核心 2022年第12期2153-2161,共9页
针对传统卷积神经网络对多传感器指纹识别泛化能力降低、准确率不高的问题,提出改进的Stacking集成学习算法。首先将AlexNet进行改进,在AlexNet中引入深度可分离卷积减少参数量,加快训练速度;引入空间金字塔池化,提升网络获取全局信息... 针对传统卷积神经网络对多传感器指纹识别泛化能力降低、准确率不高的问题,提出改进的Stacking集成学习算法。首先将AlexNet进行改进,在AlexNet中引入深度可分离卷积减少参数量,加快训练速度;引入空间金字塔池化,提升网络获取全局信息的能力;引入批归一化,加快网络收敛速度,同时提升网络在测试集上的准确率;使用全局平均池化替代全连接层,防止过拟合。然后将DenseNet和改进的AlexNet 2种卷积神经网络作为Stacking的基学习器对指纹进行分类,获得预测结果。最后对相同基学习器训练得到的各个模型,根据预测精度对各预测结果赋权,得到的预测结果再由元分类器分类。改进的Stacking算法在多传感器指纹数据库上进行实验,最终识别准确率达98.43%,相对AlexNet提升了20.05%,相对DenseNet提升了4.25%。 展开更多
关键词 指纹识别 密集连接卷积网络(DenseNet) AlexNet stacking集成学习 卷积神经网络
在线阅读 下载PDF
基于多信息融合分析的客户精准画像与推送算法设计 被引量:1
3
作者 齐光鹏 《现代电子技术》 北大核心 2025年第6期175-179,共5页
针对原始图卷积神经网络推送模型存在的冷启动和过平滑问题,文中基于堆叠重构网络和改进自编码器网络,提出一种针对用户画像的多信息推送模型。对于冷启动问题,在图卷积网络的输出部分,将用户画像中的评价信息嵌入到网络中,之后通过注... 针对原始图卷积神经网络推送模型存在的冷启动和过平滑问题,文中基于堆叠重构网络和改进自编码器网络,提出一种针对用户画像的多信息推送模型。对于冷启动问题,在图卷积网络的输出部分,将用户画像中的评价信息嵌入到网络中,之后通过注意力网络层提取特征信息,并对模型进行堆叠,以提升用户交互数据的质量。对于过平滑问题,增加网络层数的同时,使用改进的自编码器和度预测模块对动态图网络进行局部训练,从而提升算法的个性化推荐能力。在实验测试中,相较基线最优算法,所提算法的HR指标分别提升22.7%、12.2%,NDCG指标分别提升4.7%和6.5%。证明了该算法性能良好,能够为用户提供精确化的推送服务。 展开更多
关键词 图卷积神经网络 堆叠重构网络 用户精准画像 自注意力模型 度预测模块 推送算法
在线阅读 下载PDF
一种HRRP重构识别方法:带标签约束的SDAE-CNN
4
作者 尹建国 盛文 +1 位作者 赵蒙 江河 《现代防御技术》 北大核心 2025年第3期32-41,共10页
雷达空中目标高分辨距离像(high resolution range profile, HRRP)常被用于开展目标识别,在实际运行过程中,数据样本不完备和噪声干扰往往会给雷达目标识别带来挑战。为克服这一挑战,将堆栈去噪自编码器(stacked denoising auto-encoder... 雷达空中目标高分辨距离像(high resolution range profile, HRRP)常被用于开展目标识别,在实际运行过程中,数据样本不完备和噪声干扰往往会给雷达目标识别带来挑战。为克服这一挑战,将堆栈去噪自编码器(stacked denoising auto-encoders, SDAE)和卷积神经网络(convolutional neural networks,CNN)结合起来用于HRRP的去噪重构与识别,并添加标签约束以加速模型收敛。SDAE可以对HRRP数据进行去噪重构,增强数据质量,扩充目标数据集,并引入标签约束,强化隐特征与所属类别相关联的能力,加速模型收敛,CNN用于对HRRP进行分类。实验结果表明,所提方法在小样本、强噪声场景下的目标识别中展现了较优的识别性能和识别精度,能够在一定程度克服样本少、噪声高对HRRP识别的不良影响。 展开更多
关键词 高分辨距离像 目标识别 数据不完备 噪声干扰 堆栈去噪自编码器 卷积神经网络
在线阅读 下载PDF
一种适用于卷积神经网络的Stacking算法 被引量:23
5
作者 张笑铭 王志君 梁利平 《计算机工程》 CAS CSCD 北大核心 2018年第4期243-247,共5页
为提高卷积神经网络的分类精度,提出一种结合多个网络的改进Stacking算法。将卷积神经网络作为基分类器对数据进行分类,得到新的样本再经过元分类器分类。为降低元分类器输入数据的维度和多个网络分类结果之间的相关性,采用主成分分析... 为提高卷积神经网络的分类精度,提出一种结合多个网络的改进Stacking算法。将卷积神经网络作为基分类器对数据进行分类,得到新的样本再经过元分类器分类。为降低元分类器输入数据的维度和多个网络分类结果之间的相关性,采用主成分分析方法对基分类器的输出进行降维。在数据集上进行分类精度对比实验,结果表明,与传统Stacking、基于平均后验概率算法和基于类投票算法相比,该算法在同类型网络和不同类型网络中,分类精度均较高且更具有稳定性。 展开更多
关键词 卷积神经网络 stacking算法 主成分分析 降维 网络结构 分类精度
在线阅读 下载PDF
采用全卷积神经网络与Stacking算法的湿地分类方法 被引量:12
6
作者 张猛 林辉 龙湘仁 《农业工程学报》 EI CAS CSCD 北大核心 2020年第24期257-264,F0003,共9页
高精度湿地制图对湿地生态保护与精细管理具有重要的支撑作用。针对传统湿地分类方法的精度不高等问题,提出了一种采用全卷积神经(Fully Convolutional Neural,FCN)网络与集成学习的湿地分类方法。首先利用全卷积神经网络(SegNet、UNet... 高精度湿地制图对湿地生态保护与精细管理具有重要的支撑作用。针对传统湿地分类方法的精度不高等问题,提出了一种采用全卷积神经(Fully Convolutional Neural,FCN)网络与集成学习的湿地分类方法。首先利用全卷积神经网络(SegNet、UNet及RefineNet)对GF-6影像的语义特征进行提取与融合,然后利用Stacking集成算法对融合后的特征进行判别和分类。结果表明,采用全卷积神经网络与Stacking算法能有效提取湿地信息,总体分类精度为88.16%,Kappa系数为0.85。与采用全卷积神经网络与单一机器学习的随机森林(Random Forest,RF)、支持向量机(Support Vector Machin,SVM)与k-近邻(Nearest Neighbor,kNN)算法相比,该研究提出的湿地分类方法在总体分类精度上分别提高了4.87,5.31和5.08个百分点;与采用单一全卷积神经网络(RefineNet、SegNet、UNet)与Stacking算法下的湿地分类结果,该文提出的湿地分类方法在总体分类精度上分别提高了2.78,4.48与4.91个百分点;该方法一方面能通过卷积神经网络提取遥感影像深层的语义特征,另一方面通过集成学习根据各分类器的表征性能进行合理的选择并重组,从而提高分类精度及其泛化能力。该方法能为湿地信息提取及土地覆盖分类方法的研究提供参考。 展开更多
关键词 湿地 分类 卷积神经网络 stackING 集成学习
在线阅读 下载PDF
基于多特征优化的PolSAR数据农作物精细分类方法 被引量:1
7
作者 郭交 王鹤颖 +2 位作者 项诗雨 连嘉茜 王辉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期275-285,共11页
农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的... 农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的连续时序信息,有效提升表达作物遥感特征的丰富度,在农作物分类中独具优势。但多时相和多特征的引入必然导致模型运算量剧增,不利于工程应用。针对上述问题,本文提出了一种基于多特征优化的PolSAR数据农作物精细分类方法,首先对PolSAR数据进行多种极化目标分解及参数提取以获得多个散射特征;然后使用基于栈式稀疏自编码网络和ReliefF优选的方法进行特征增强与优化,获取最优特征集;最后构建具有2个分支结构的卷积神经网络,融合不同卷积深度输出的特征,完成农作物的高精度分类。通过对单时相数据的特征分析、单时相数据初步分类实验和多时相数据不同特征集结合分类器的对比实验,证明本文所提方法能够在低维特征输入的前提下,最大程度提取不同作物之间的差异性特征,准确高效地实现对农作物的精细分类,最高分类精度和Kappa系数分别达到97.69%和97.24%。 展开更多
关键词 农作物分类 POLSAR 栈式稀疏自编码网络 RELIEFF 卷积神经网络
在线阅读 下载PDF
基于融合模型的网络安全态势感知方法 被引量:10
8
作者 郭尚伟 刘树峰 +3 位作者 李子铭 欧阳德强 王宁 向涛 《计算机工程》 CAS CSCD 北大核心 2024年第11期1-9,共9页
伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在... 伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在数据特征提取及较长时间序列数据处理能力不足的问题,提出一种融合堆栈稀疏自编码器(SSAE)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AM)的模型。通过SSAE和CNN提取数据特征,利用AM强化BiGRU对关键信息的关注度,实现对异常流量的攻击类别判定,并结合网络安全态势量化指标,对网络安全态势进行量化评分并划分等级。实验结果表明,融合模型在各项指标上均优于传统深度学习模型,能够准确感知网络态势。 展开更多
关键词 态势感知 威胁检测 堆叠稀疏自编码器 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
集成卷积神经网络和视觉Transformer的隧道掌子面岩性判识研究 被引量:3
9
作者 向露露 童建军 +2 位作者 王明年 苗兴旺 叶沛 《隧道建设(中英文)》 CSCD 北大核心 2024年第5期1056-1067,I0078-I0089,共24页
为研究综合高效的隧道掌子面岩性智能分类方法,首先,通过收集高铁沿线施工隧道高清掌子面照片、地质素描图及工程地质说明,筛选并统计出灰岩、泥岩、砂岩、玄武岩4种岩性,在此基础上,采用图像增强扩充样本数量并构建岩性样本集;然后,基... 为研究综合高效的隧道掌子面岩性智能分类方法,首先,通过收集高铁沿线施工隧道高清掌子面照片、地质素描图及工程地质说明,筛选并统计出灰岩、泥岩、砂岩、玄武岩4种岩性,在此基础上,采用图像增强扩充样本数量并构建岩性样本集;然后,基于上述样本集分别构建ResNet50V2岩性分类迁移模型及VIT岩性分类模型,对比二者岩性分类效果,并采用Stacking方法集成2种模型的分类特点;最后,通过对比3种元学习器(逻辑回归、支持向量机、决策树)对2种模型的集成融合效果来选取最适用的元学习器。结果表明:采用逻辑回归集成ResNet50V2及VIT所构建的集成模型对岩性的分类效果最好,能充分融合掌子面岩性的全、局部特征来进行分类,模型准确率达到93.8%。 展开更多
关键词 隧道 掌子面岩性 卷积神经网络 视觉Transformer 集成学习 stacking方法
在线阅读 下载PDF
基于CNN与BLS的滚动轴承故障诊断方法 被引量:6
10
作者 官源林 刘贵林 +2 位作者 于春雨 杨熙鑫 井陆阳 《振动.测试与诊断》 EI CSCD 北大核心 2024年第5期1017-1022,1044,共7页
针对传统滚动轴承故障诊断方法训练时间长和效率低的问题,提出一种基于卷积神经网络(convolutional neural networks,简称CNN)和宽度学习系统(broad learning system,简称BLS)的故障诊断方法,实现了端到端的快速准确模式识别。首先,建立... 针对传统滚动轴承故障诊断方法训练时间长和效率低的问题,提出一种基于卷积神经网络(convolutional neural networks,简称CNN)和宽度学习系统(broad learning system,简称BLS)的故障诊断方法,实现了端到端的快速准确模式识别。首先,建立CNN与BLS结合的宽度卷积学习系统(broad convolutional learning system,简称BCLS),利用CNN提取信号特征和BLS进行分类,获得系统输出;其次,通过残差学习增加BLS层数,形成堆叠宽度卷积学习系统(stacked broad convolutional learning system,简称SBCLS),优化预测输出与真实标签的误差,对轴承故障模式进行识别;最后,通过试验将所提方法与3种BLS方法的预测结果进行了比较验证。结果表明,与几种常见故障诊断方法相比,所提方法诊断效果更佳,具有更高的准确率和训练效率,在边缘端的智能故障诊断中具有较好的应用前景。 展开更多
关键词 堆叠宽度卷积学习系统 卷积神经网络 故障诊断 滚动轴承
在线阅读 下载PDF
基于多项式特征生成的卷积神经网络 被引量:1
11
作者 刘铭 肖志成 于晓东 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期116-121,共6页
基于一维特征数据的多项式特征生成法,提出一种高维特征数据利用多项式特征生成法生成特征数据的数据增强算法,同时提出一种卷积神经网络训练时将生成的多项式特征数据与神经网络模型相融合的算法,其可将生成的多项式特征数据与卷积神... 基于一维特征数据的多项式特征生成法,提出一种高维特征数据利用多项式特征生成法生成特征数据的数据增强算法,同时提出一种卷积神经网络训练时将生成的多项式特征数据与神经网络模型相融合的算法,其可将生成的多项式特征数据与卷积神经网络模型进行有机结合,并改善卷积神经网络模型建模时由于数据样本有限、数据样本总量固定、可使用的数据样本差异性小等数据限制所导致的模型识别准确率低、模型的泛化性能有限等问题.实验结果表明,该方法的卷积神经网络模型准确率得到了有效提升. 展开更多
关键词 卷积神经网络 特征生成 多项式 特征堆叠
在线阅读 下载PDF
基于嵌入式平台和轻量化模型的板材计数装置
12
作者 刘忠英 翟鹏飞 侯维岩 《电子测量技术》 北大核心 2024年第9期46-51,共6页
针对堆叠板材计数过程中人工计数法效率低、准确性不高的问题。本文提出了一套基于嵌入式平台和轻量化模型的板材计数装置,将改进的Faster R-CNN网络植入工控机中运行,可以在工业和物流现场实时识别板材的数量。内置网络使用轻量级网络M... 针对堆叠板材计数过程中人工计数法效率低、准确性不高的问题。本文提出了一套基于嵌入式平台和轻量化模型的板材计数装置,将改进的Faster R-CNN网络植入工控机中运行,可以在工业和物流现场实时识别板材的数量。内置网络使用轻量级网络MobileNetv2融合轻量通道注意力机制ECA作为骨干网络,使用空间注意力机制和倒置残差结构重构FPN架构,并提出了一种基于高度交并比的HIOU_Loc预测框去冗余处理新算法,以缓解小目标检测困难的难题。在基于N4100平台的工控机中运行实验表明:本文所提出的算法对板材计数准确度达到了98.51%,检测一张高分辨率板材图像仅需0.31 s。本装置设计了一个校正模块,经过人工后处理后,对于堆叠板材的计数准确率可以达到100%,满足了实际场景下对板材实时计量的需求。 展开更多
关键词 堆叠板材计数装置 Faster R-CNN 轻量化卷积神经网络 K-means++ 小目标检测
在线阅读 下载PDF
深度学习方法研究新进展 被引量:30
13
作者 刘帅师 程曦 +1 位作者 郭文燕 陈奇 《智能系统学报》 CSCD 北大核心 2016年第5期567-577,共11页
本文依据模型结构对深度学习进行了归纳和总结,描述了不同模型的结构和特点。首先介绍了深度学习的概念及意义,然后介绍了4种典型模型:卷积神经网络、深度信念网络、深度玻尔兹曼机和堆叠自动编码器,并对近3年深度学习在语音处理、计算... 本文依据模型结构对深度学习进行了归纳和总结,描述了不同模型的结构和特点。首先介绍了深度学习的概念及意义,然后介绍了4种典型模型:卷积神经网络、深度信念网络、深度玻尔兹曼机和堆叠自动编码器,并对近3年深度学习在语音处理、计算机视觉、自然语言处理以及医疗应用等方面的应用现状进行介绍,最后对现有深度学习模型进行了总结,并且讨论了未来所面临的挑战。 展开更多
关键词 深度学习 卷积神经网络 深度信念网络 深度玻尔兹曼机 堆叠自动编码器
在线阅读 下载PDF
深度学习在手写汉字识别中的应用综述 被引量:114
14
作者 金连文 钟卓耀 +3 位作者 杨钊 杨维信 谢泽澄 孙俊 《自动化学报》 EI CSCD 北大核心 2016年第8期1125-1141,共17页
手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本... 手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本文综述了深度学习在手写汉字识别领域的研究进展及具体应用.首先介绍了手写汉字识别的研究背景与现状.其次简要概述了深度学习的几种典型结构模型并介绍了一些主流的开源工具,在此基础上详细综述了基于深度学习的联机和脱机手写汉字识别的方法,阐述了相关方法的原理、技术细节、性能指标等现状情况,最后进行了分析与总结,指出了手写汉字识别领域仍需要解决的问题及未来的研究方向. 展开更多
关键词 深度学习 手写汉字识别 卷积神经网络 回归神经网络 长短时记忆模型 层叠自动编码机
在线阅读 下载PDF
基于堆叠卷积注意力的网络流量异常检测模型 被引量:17
15
作者 董卫宇 李海涛 +2 位作者 王瑞敏 任化娟 孙雪凯 《计算机工程》 CAS CSCD 北大核心 2022年第9期12-19,共8页
入侵检测系统(IDS)在发现网络异常和攻击方面发挥着重要作用,但传统IDS误报率较高,不能准确分析和识别异常流量。目前,深度学习技术被广泛应用于网络流量异常检测,但仅仅采用简单的深度神经网络(DNN)模型难以有效提取流量数据中的重要... 入侵检测系统(IDS)在发现网络异常和攻击方面发挥着重要作用,但传统IDS误报率较高,不能准确分析和识别异常流量。目前,深度学习技术被广泛应用于网络流量异常检测,但仅仅采用简单的深度神经网络(DNN)模型难以有效提取流量数据中的重要特征。针对上述问题,提出一种基于堆叠卷积注意力的DNN网络流量异常检测模型。通过堆叠多个以残差模块连接的注意力模块增加网络模型深度,同时在注意力模块中引入卷积神经网络、池化层、批归一化层和激活函数层,防止模型过拟合并提升模型性能,最后在DNN模型中得到输出向量。基于NSL-KDD数据集对模型性能进行评估,将数据集预处理生成二进制特征,采用多分类、二分类方式验证网络流量异常检测效果。实验结果表明,该模型性能优于KNN、SVM等机器学习模型和ANN、AlertNet等深度学习模型,其在多分类任务中识别准确率为0.807 6,较对比模型提高0.034 0~0.097 5,在二分类任务中准确率和F1分数为0.860 0和0.863 8,较对比模型提高0.013 0~0.098 8和0.030 6~0.112 8。 展开更多
关键词 网络流量异常检测 入侵检测系统 深度神经网络 堆叠卷积注意力 二进制特征
在线阅读 下载PDF
基于堆栈式自动编码器的加密流量识别方法 被引量:20
16
作者 王攀 陈雪娇 《计算机工程》 CAS CSCD 北大核心 2018年第11期140-147,153,共9页
基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学... 基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学习,实现对加密应用流量的准确识别。考虑到样本数据集的类别不平衡性对分类精度的影响,采用SMOTE过抽样方法对不平衡数据集进行处理。实验结果表明,该方法各项性能指标均优于MLP加密流量识别方法,识别精确度和召回率以及F1-Score均可达到99%。 展开更多
关键词 加密流量识别 深度学习 堆栈式自动编码器 流量分类 多层感知机 卷积神经网络
在线阅读 下载PDF
基于深度堆叠卷积神经网络的图像融合 被引量:37
17
作者 蔺素珍 韩泽 《计算机学报》 EI CSCD 北大核心 2017年第11期2506-2518,共13页
该文针对多尺度变换融合图像中普遍存在的需要依据先验知识选取滤波器,导致融合效果存在不确定性的问题,提出了基于深度堆叠卷积神经网络的融合方法.首先,分别以高斯拉普拉斯滤波器和高斯滤波器为首层网络的初始卷积核,将源图像分解为... 该文针对多尺度变换融合图像中普遍存在的需要依据先验知识选取滤波器,导致融合效果存在不确定性的问题,提出了基于深度堆叠卷积神经网络的融合方法.首先,分别以高斯拉普拉斯滤波器和高斯滤波器为首层网络的初始卷积核,将源图像分解为高频和低频图像序列;其次,基于He K方法初始化其余层卷积核,获得与源图像尺寸相同的高频和低频重构图像各一幅,并将二者合成源图像的近似图像;再以源图像和近似图像像素值之差的平方和的均值为误差函数,进行反向传播训练形成基本神经单元;之后,将多个基本单元堆叠起来利用end-to-end的方式调整整个网络得到深度堆叠神经网络.然后,利用该堆叠网络分别分解测试图像对,得到各自的高频和低频图像,再基于局部方差取大和区域匹配度合并的规则分别融合高频和低频图像,并将高频融合图像和低频融合图像放回最后一层网络,得到最终的融合图像.实验结果表明:与基于双树复小波变换(Dual-Tree Complex Wavelet Transform,DTCWT)、非下采样轮廓波变换(Non-Subsampled Contourlet Transform,NSCT)和非下采样剪切波变换(Non-Subsampled Shearlet Transform,NSST)的融合结果相比,用高斯拉普拉斯滤波器和高斯滤波器初始化的深度堆叠卷积神经网络融合效果主观效果好,客观指标最优个数为NSCT的3.3倍,运行时间为NSCT的30.3%和NSST的11.6%. 展开更多
关键词 图像融合 深度学习 卷积神经网络 堆叠自动编码 滤波器
在线阅读 下载PDF
结合改进CNN和双约束损失函数的叠前地震数据低频补偿方法 被引量:2
18
作者 戴永寿 高倩倩 +2 位作者 孙伟峰 万勇 吴莎莎 《石油地球物理勘探》 EI CSCD 北大核心 2022年第6期1287-1295,I0001,I0002,共11页
陆地深层、超深层地震资料低频信息缺失、地震资料分辨率低,影响后续地震资料的准确解释。基于模型驱动的低频补偿方法依赖严格假设且参数调整不灵活;卷积神经网络(CNN)对细微变化的特征提取能力有限且梯度变化不明显、网络易陷入局部最... 陆地深层、超深层地震资料低频信息缺失、地震资料分辨率低,影响后续地震资料的准确解释。基于模型驱动的低频补偿方法依赖严格假设且参数调整不灵活;卷积神经网络(CNN)对细微变化的特征提取能力有限且梯度变化不明显、网络易陷入局部最优,导致低频欠补偿或补偿精度低。为此,提出一种结合改进CNN和双约束损失函数的叠前地震数据低频补偿方法。为解决梯度消失问题,在不增加CNN计算复杂度的前提下,加入可直接学习输入与输出之间残差特征的网络单元(残差块),并采用批归一化处理,使网络对细微变化更敏感,从而提高网络训练效率。为解决梯度变化不明显导致网络过早收敛的问题,以网络输出与原始地震记录差异和相关度为优化目标,通过均方误差和皮尔逊距离的加权求和建立双约束条件的损失函数计算补偿误差,使梯度变化更明显以保证梯度下降过程可跳出局部最优,从而提高低频补偿精度。合成数据和中国西部X地区实际叠前地震数据低频补偿处理结果验证了该方法的可行性和有效性。与基于CNN低频补偿方法及反褶积结合宽带俞式低通滤波器的低频补偿方法相比,在补偿低频成分的同时不会破坏原始信号的中高频信息。 展开更多
关键词 叠前地震数据 残差块 皮尔逊距离 低频补偿 卷积神经网络(CNN)
在线阅读 下载PDF
基于双流神经网络的煤矿井下人员步态识别方法 被引量:8
19
作者 刘晓阳 刘金强 郑昊琳 《矿业科学学报》 CSCD 2021年第2期218-227,共10页
人脸、指纹和虹膜等生物识别方法在井下复杂环境限制下常常比较模糊,导致基于这些生物特征的煤矿井下人员身份识别率不高。本文在残差神经网络和栈式卷积自动编码器的基础上,提出了一种基于双流神经网络(TS-GAIT)的步态识别方法。主要... 人脸、指纹和虹膜等生物识别方法在井下复杂环境限制下常常比较模糊,导致基于这些生物特征的煤矿井下人员身份识别率不高。本文在残差神经网络和栈式卷积自动编码器的基础上,提出了一种基于双流神经网络(TS-GAIT)的步态识别方法。主要利用残差神经网络提取步态模式中包含时空信息的动态特征,利用栈式卷积自动编码器提取包含生理信息的静态特征,并采用一种新颖的特征融合方法实现动态特征和静态特征的融合表征。提取的特征对角度、衣着和携带条件具有鲁棒性。在CASIA-B步态数据集和采集的煤矿工人步态数据集(CM-GAIT)上对该方法进行实验评估。结果表明,采用该方法进行煤矿井下人员步态识别是有效可行的,与其他步态识别方法相比准确率有显著提高。 展开更多
关键词 煤矿井下人员 步态识别 栈式卷积自动编码器 残差神经网络 双流神经网络
在线阅读 下载PDF
用于高光谱变化检测的多径卷积网络算法 被引量:3
20
作者 赵春晖 张锦林 +1 位作者 宿南 闫奕名 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第9期1398-1404,共7页
针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码... 针对如何有效利用高光谱图像中的光谱信息和空间信息进行变化检测的问题,本文提出了一种基于堆叠降噪自动编码器并融合空间信息的多路径卷积网络的高光谱遥感图像变化检测方法。针对高光谱图像信息冗余的问题,使用训练堆叠降噪自动编码器将高光谱数据进行降维。为了得到2幅图像间的差异信息,使用光谱角来表征对应像素间的变化关系。为了利用遥感图像中的空间信息,使用光谱角矩阵中切比雪夫距离小于等于3的区域来进行空间信息的提取,构建一个融合了空间信息的多路径卷积神经网络,并通过该网络得到变化检测结果。在3个高光谱变化检测数据集上进行实验,实验结果表明该方法的总体误差低、准确率高和Kappa系数高,证明了该方法的有效性。 展开更多
关键词 变化检测 高光谱遥感图像 堆叠降噪自动编码器 光谱角 空间信息 多路径卷积网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部