Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un...The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.展开更多
Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to...Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.展开更多
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
基金financial support provided by the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)Major Project of Regional Joint Foundation of China(No.U21A20107)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2024JJ4021)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)。
文摘The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.
基金supports from the National High Technology Research and Development Program of China (No. 2012AA062101)the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-10-0770)+1 种基金the Program Granted for Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXZZ11-0309)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)
文摘Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.