采用熔盐顶部籽晶法从K 2 Mo 3 O 10-B 2 O 3助熔剂中生长出尺寸为20 mm的优质GdAl 3(BO 3)4(简称GAB)和Nd^3+激活的自变频激光晶体。确定了GAB晶体的透光波长范围、折射率和倍频系数随波长的变化,结果表明其在整个透光范围内均可实现...采用熔盐顶部籽晶法从K 2 Mo 3 O 10-B 2 O 3助熔剂中生长出尺寸为20 mm的优质GdAl 3(BO 3)4(简称GAB)和Nd^3+激活的自变频激光晶体。确定了GAB晶体的透光波长范围、折射率和倍频系数随波长的变化,结果表明其在整个透光范围内均可实现相位匹配。测定了Nd^3+∶GAB晶体在室温下的偏振吸收、荧光光谱和荧光寿命,进行了光谱计算,测试了晶体的自变频激光性能,实现了紫外-可见光-红外-中红外多波段激光输出。展开更多
The (Y,Gd)BO 3∶Eu phosphor was synthesized by solid state reaction. The UV spectra showed that in a certain range of Gd 3+ concentration, more Gd 3+ absorbed energy and transferred it to Eu 3+ with its increasing con...The (Y,Gd)BO 3∶Eu phosphor was synthesized by solid state reaction. The UV spectra showed that in a certain range of Gd 3+ concentration, more Gd 3+ absorbed energy and transferred it to Eu 3+ with its increasing concentration. From the spectra in VUV region, it was observed that both the doping and the concentrations of Gd 3+ , Eu 3+ greatly affected the absorption of the host lattice. The absorbances at 147 nm and 170 nm increased when the Gd 3+ was doped which can be explained as that Gd 3+ transferred energy to BO 4. The optical properties of (Y,Gd)BO 3∶Eu were the best when the concentration of Eu 3+ was about 0.04.展开更多
基金Shanghai Commission of Sciences and Technology(08520513100)Shanghai Municipal Education Commission(J51504,09ZZ196)SIT Research Project on Optical Functional Crystals(TDP2009-03)
文摘采用熔盐顶部籽晶法从K 2 Mo 3 O 10-B 2 O 3助熔剂中生长出尺寸为20 mm的优质GdAl 3(BO 3)4(简称GAB)和Nd^3+激活的自变频激光晶体。确定了GAB晶体的透光波长范围、折射率和倍频系数随波长的变化,结果表明其在整个透光范围内均可实现相位匹配。测定了Nd^3+∶GAB晶体在室温下的偏振吸收、荧光光谱和荧光寿命,进行了光谱计算,测试了晶体的自变频激光性能,实现了紫外-可见光-红外-中红外多波段激光输出。
文摘The (Y,Gd)BO 3∶Eu phosphor was synthesized by solid state reaction. The UV spectra showed that in a certain range of Gd 3+ concentration, more Gd 3+ absorbed energy and transferred it to Eu 3+ with its increasing concentration. From the spectra in VUV region, it was observed that both the doping and the concentrations of Gd 3+ , Eu 3+ greatly affected the absorption of the host lattice. The absorbances at 147 nm and 170 nm increased when the Gd 3+ was doped which can be explained as that Gd 3+ transferred energy to BO 4. The optical properties of (Y,Gd)BO 3∶Eu were the best when the concentration of Eu 3+ was about 0.04.