Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its tes...Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.展开更多
In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular sta...In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.展开更多
At first, the paper reviews, analyses and discusses uplifting mechanism and history, current situation of Tibet plateau. Coal\|bearing strata and coal seam were discovered by surveying and many rocks samples and struc...At first, the paper reviews, analyses and discusses uplifting mechanism and history, current situation of Tibet plateau. Coal\|bearing strata and coal seam were discovered by surveying and many rocks samples and structural samples were collected, which established the foundation for further studying. From all above, the paper has studied strata system, time\|spatial evolution, magma activity and its regularity of continental collision of Tibet plateau and rock’s mechanical features under high temperature and pressure. The paper has also summerized tectonic features, studied geological process by time coordinate and proposed multidisciplinary geological model. The paper has proposed evolutinal model of modern structural stress field in early quaternary, modern structural stress field and crustal deformation and explored geophysical field features and deep structures from man\|mad earthquake, regional gravity field and electrical structures, thus established geophysical field model. In addition, the paper proposed overall dynamic model according to stress field, displacement orientation and velocity restriction condition, indoplate collision to Eurasia.Thoroughly, the paper has studied and stated mechanical system, non\|stability, multibody collision mechanics and mantle plume mechanical model and established mechanical model. Finally, the paper has studied numeral simulation about spheric inter\|acting during continental collision of Tibet plateau, from this, analysed and inferred its evolution history.展开更多
基金Project(2014E00468R)supported by Technological Innovation Fund of Aviation Industry Corporation of China
文摘Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.
文摘At first, the paper reviews, analyses and discusses uplifting mechanism and history, current situation of Tibet plateau. Coal\|bearing strata and coal seam were discovered by surveying and many rocks samples and structural samples were collected, which established the foundation for further studying. From all above, the paper has studied strata system, time\|spatial evolution, magma activity and its regularity of continental collision of Tibet plateau and rock’s mechanical features under high temperature and pressure. The paper has also summerized tectonic features, studied geological process by time coordinate and proposed multidisciplinary geological model. The paper has proposed evolutinal model of modern structural stress field in early quaternary, modern structural stress field and crustal deformation and explored geophysical field features and deep structures from man\|mad earthquake, regional gravity field and electrical structures, thus established geophysical field model. In addition, the paper proposed overall dynamic model according to stress field, displacement orientation and velocity restriction condition, indoplate collision to Eurasia.Thoroughly, the paper has studied and stated mechanical system, non\|stability, multibody collision mechanics and mantle plume mechanical model and established mechanical model. Finally, the paper has studied numeral simulation about spheric inter\|acting during continental collision of Tibet plateau, from this, analysed and inferred its evolution history.