期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
基于双图神经网络的会话推荐算法
1
作者 李忠伟 吴金燠 +2 位作者 刘昕 周洁 李可一 《计算机工程与设计》 北大核心 2025年第1期23-29,共7页
针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力... 针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力机制的融合策略对项目的特征表示进行聚合,获取会话的全局表示。综合考虑用户的长期和短期兴趣,预测用户偏好。在KKBOX和MIND两个数据集上进行了大量实验,实验结果表明,所提模型优于现有基准模型。 展开更多
关键词 推荐系统 会话推荐 图神经网络 会话图 全局相似图 相似度图卷积网络 注意力机制
在线阅读 下载PDF
融合全局和属性信息的双图神经网络会话推荐
2
作者 杨兴耀 齐正 +3 位作者 张祖莲 于炯 陈嘉颖 王东晓 《计算机工程与设计》 北大核心 2025年第3期770-778,共9页
为解决现有会话推荐未利用项目的额外属性信息,以及忽略全局项目之间交互问题,提出一种融合全局和属性信息的双图神经网络会话推荐模型。在会话序列中捕获项目显式和隐式信息,将项目之间的交互关系构建成全局图和属性图,在全局图中利用... 为解决现有会话推荐未利用项目的额外属性信息,以及忽略全局项目之间交互问题,提出一种融合全局和属性信息的双图神经网络会话推荐模型。在会话序列中捕获项目显式和隐式信息,将项目之间的交互关系构建成全局图和属性图,在全局图中利用一个门控机制捕获显式信息,在属性图中将一个自注意力机制嵌入到图注意力网络中学习项目隐式信息。利用池化操作将两种信息融合,根据最终嵌入计算预测评分。实验结果表明,模型在3个公开数据集Diginetica、Tmall和30Music上的精确度和平均倒数排名优于新近基线模型,验证了模型的有效性。 展开更多
关键词 推荐系统 会话推荐 图神经网络 注意力机制 门控机制 图注意力网络 自注意力机制
在线阅读 下载PDF
基于图神经网络和用户长短期偏好的会话推荐
3
作者 卢官明 柯润宇 +2 位作者 卢峻禾 丁佳伟 魏金生 《南京邮电大学学报(自然科学版)》 北大核心 2025年第2期77-85,共9页
针对现有的会话推荐方法没有考虑用户长期偏好以及不同项目之间相关性的问题,提出了一种基于图神经网络和用户长短期偏好的会话推荐模型(GNN⁃LSTUP)。首先,基于所有会话构建全局会话图,通过融入相关性编码的图神经网络和注意力机制来挖... 针对现有的会话推荐方法没有考虑用户长期偏好以及不同项目之间相关性的问题,提出了一种基于图神经网络和用户长短期偏好的会话推荐模型(GNN⁃LSTUP)。首先,基于所有会话构建全局会话图,通过融入相关性编码的图神经网络和注意力机制来挖掘用户长期偏好;然后,通过构建局部会话图并利用图神经网络和注意力机制来捕捉用户短期偏好;最后,通过求和池化操作融合用户长、短期偏好,以便更准确地预测用户下一次交互行为。在Diginetica、Tmall和Nowplaying数据集上进行了实验,结果表明,提出的GNN⁃LSTUP在Diginetica数据集上取得的P@20和MRR@20分别为54.19%和18.94%,在Tmall数据集上取得的P@20和MRR@20分别为34.68%和16.96%,在Nowplaying数据集上取得的P@20和MRR@20分别为23.32%和8.62%,优于其他已有的会话推荐模型。 展开更多
关键词 会话推荐 图神经网络 用户偏好 相关性
在线阅读 下载PDF
基于混合注意力和类型感知的方面级情感分析
4
作者 王红霞 张佳慧 聂振凯 《高技术通讯》 北大核心 2025年第3期262-272,共11页
为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子... 为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子的语义信息,该模块采用方面感知注意力机制,学习与方面项相关的局部语义特征,再结合自注意力机制学习句子的全局语义特征。其次,为了更充分地利用依赖树中的句法信息,设计了利用依赖关系类型构建类型感知图模块,并采用注意力机制区分不同依赖类型的重要程度,重构带有权重的类型感知图。最后,通过图神经网络来挖掘更深层次的语义和句法信息。在Restaurant14、Laptop14和Twitter公开数据集上进行实验,实验结果表明,与基准模型相比,本文提出的模型具有更好的分类效果。 展开更多
关键词 方面级情感分析 注意力机制 方面感知注意力 类型感知图 图神经网络
在线阅读 下载PDF
融合多层图与分类信息的双意图会话推荐
5
作者 刘超 王中迪 +1 位作者 余岩化 朱军 《计算机应用研究》 北大核心 2025年第4期1058-1064,共7页
针对现有会话推荐系统存在的会话间信息挖掘不够充分、会话间聚合信息冗余和辅助信息未与会话特征相结合的问题,提出融合多层图与分类信息的双意图会话推荐模型(SRIMC)。首先,根据会话序列,构建局部会话图、会话关系图和全局项目图,通... 针对现有会话推荐系统存在的会话间信息挖掘不够充分、会话间聚合信息冗余和辅助信息未与会话特征相结合的问题,提出融合多层图与分类信息的双意图会话推荐模型(SRIMC)。首先,根据会话序列,构建局部会话图、会话关系图和全局项目图,通过图神经网络(GNN)学习得到局部会话特征、会话关系特征和全局项目会话特征,并将上述特征结合获得α意图;其次,基于替换先验分布为β分布的贝叶斯分布整合分类信息与会话长度信息,获得β意图;最后,将α和β意图融合进行预测。在五个公开数据集上的实验结果表明,SRIMC的P@20提升了1.23%~51.78%,MRR@20提升了2.87%~80.87%,证明了模型利用多层会话信息与分类信息捕获用户意图的有效性。 展开更多
关键词 会话推荐 多层信息 图神经网络 分类信息 双意图
在线阅读 下载PDF
融合多语言知识的慕课评论隐式方面情感分析 被引量:1
6
作者 陈怀博 张会兵 +1 位作者 首照宇 潘芳 《计算机工程与应用》 北大核心 2025年第5期104-112,共9页
慕课完成率不高的问题严重制约着其高质量发展,慕课评论中隐喻、客观事实描述、讽刺、反问等表达中蕴含的隐式情感更为真实地表达了用户的学习体验,对信息进行分析、利用,从而挖掘出学生关于课程的反馈信息,并做出相应的改善,有助于提... 慕课完成率不高的问题严重制约着其高质量发展,慕课评论中隐喻、客观事实描述、讽刺、反问等表达中蕴含的隐式情感更为真实地表达了用户的学习体验,对信息进行分析、利用,从而挖掘出学生关于课程的反馈信息,并做出相应的改善,有助于提升学生满意度以提高慕课完成率。为此,提出一种融合多语言知识的慕课隐式方面情感分析模型来获得更为精准的隐式情感信息。针对前两种表达中缺乏明显情感倾向的特点,引入多重图神经网络来融合词性、语义、句法和义原等多语言知识,充分利用其中的关联关系来挖掘评论中隐含的情感信息。同时,对于后两种表达方式中的情感词与文本真实情感极性不符的问题,构建多层级注意力机制来获取整体语义粗粒度、方面词细粒度中的情感信息。在构建的MOOC数据集上测试模型,准确率和F1指数分别达到90.2%和93.8%,同时在SMP2019-ECISA数据集上的对比实验表明,所提模型的准确率与KC-ISA-BERT等模型相比提升了1.7个百分点。 展开更多
关键词 隐式情感分析 方面情感分析 图神经网络 多级注意力机制 慕课
在线阅读 下载PDF
基于图卷积网络和CTC/Attention的连续手语识别
7
作者 边辉 孟畅乾 +2 位作者 李子涵 陈子豪 谢雪雷 《计算机科学》 北大核心 2025年第S1期550-558,共9页
手语是听力障碍患者之间一种重要的交流方式。通过手语识别,可以让患者与正常人进行无障碍的交流。随着深度学习技术的发展,各种手语识别技术也随之发展,但现有的手语识别技术往往无法完成连续识别手语的任务,因此文中提出了一种基于图... 手语是听力障碍患者之间一种重要的交流方式。通过手语识别,可以让患者与正常人进行无障碍的交流。随着深度学习技术的发展,各种手语识别技术也随之发展,但现有的手语识别技术往往无法完成连续识别手语的任务,因此文中提出了一种基于图卷积网络(Graph Convolution Network,GCN)和神经网络的时序类分类(Connectionist Temporal Classification/Attention,CTC/Attention)的连续手语识别方法,分别从空间维度与时间维度提取特征,并将空间注意力机制融入其中,以赋予骨骼点权重,突出有效的空间特征,实现手语的连续识别。该方法可实现连续手语语句翻译的序列对齐和上下文语义建模。首先基于MediaPipe框架采集手语动作骨骼点数据,并基于此搭建中文手语骨骼关键点坐标的数据集,根据骨骼关键点坐标,设计了基于时空图神经网络(Spatio-Temporal Graph Convolutional Networks,ST-GCN)的动态手语词识别方法,然后提出基于GCN和CTC/Attention的编解码器网络,用于实现连续手语语句识别的方法。在数据集有限的情况下,在自建的骨骼点数据集SSLD上对所提出的方法进行评估,实验结果表明,平均连续手语识别字准确率达到94.41%,证明所提模型具有良好的手语识别能力。 展开更多
关键词 连续手语识别 图卷积网络 基于神经网络的时序类分类 MediaPipe框架 骨骼关键点 基于时空图神经网络
在线阅读 下载PDF
UniRec:融合项目表示一致性信息的会话推荐模型
8
作者 翟雨欣 彭敦陆 朱金玲 《小型微型计算机系统》 北大核心 2025年第4期856-862,共7页
会话推荐是根据匿名的交互序列预测下一个商品的任务.基于用户历史行为准确建模用户的下一个动作对提高推荐性能至关重要.近些年,许多研究者使用对比学习来改进向量的表示以提高建模的准确性.但现有的基于对比学习的方法大多数都涉及复... 会话推荐是根据匿名的交互序列预测下一个商品的任务.基于用户历史行为准确建模用户的下一个动作对提高推荐性能至关重要.近些年,许多研究者使用对比学习来改进向量的表示以提高建模的准确性.但现有的基于对比学习的方法大多数都涉及复杂的建模过程,过度依赖于模型结构,从而忽视了优化项目表示空间的重要性.为此,本文提出了一种融合项目表示一致性信息与会话信息的会话推荐模型(UniRec).模型通过构建位置感知图来提取细粒度的全局级信息,并利用图注意力网络(GAT)学习项目间成对的过渡关系捕获会话级信息,引入额外的损失函数关注项目表示空间的一致性.最后,使用融合函数获得最终项目表示预测出下一个可能交互的item.在3个真实数据集上的对比实验结果表明,相对基线模型,本文所提模型在P@20、MRR@20等指标上具有一定的提升. 展开更多
关键词 基于会话的推荐系统 一致性信息 对比学习 图神经网络
在线阅读 下载PDF
基于跨会话项目图的长短期兴趣推荐方法
9
作者 李雪 周军 +1 位作者 曲晨曦 张大俊 《计算机工程与设计》 北大核心 2025年第8期2193-2199,共7页
针对现有会话推荐方法主要关注用户当前会话内的短期兴趣,忽略了丰富的跨会话信息及长期兴趣信息的问题,提出了一种基于跨会话项目图的长短期兴趣推荐方法,该方法由构建跨会话项目图模块、长短期兴趣提取模块、长短期兴趣融合模块及预... 针对现有会话推荐方法主要关注用户当前会话内的短期兴趣,忽略了丰富的跨会话信息及长期兴趣信息的问题,提出了一种基于跨会话项目图的长短期兴趣推荐方法,该方法由构建跨会话项目图模块、长短期兴趣提取模块、长短期兴趣融合模块及预测模块4部分组成。该方法通过构建跨会话项目图,探索复杂的跨会话效应,采用图神经网络及多头注意力机制划分用户的长短期兴趣信息,解决偶然兴趣影响,采用门控融合机制将长短期兴趣融合为动态兴趣,预测层得到该节点的概率评分,并预测下一个点击的项目。实验在Diginetica、Yoochoose数据集上结果表明,相较于最优算法各项指标均有所提升,验证算法的有效性。 展开更多
关键词 会话推荐 跨会话 长短期兴趣 图神经网络 多头注意力机制 门控融合机制 动态兴趣
在线阅读 下载PDF
基于情感特征精炼网络的方面级情感分析
10
作者 王一斐 宋威 《中文信息学报》 北大核心 2025年第6期127-136,共10页
目前方面级情感分析主要利用注意力机制完成方面词与上下文的语义交互,提取方面词的情感特征。但是这类方法忽略了上下文与方面词间的句法依存关系,导致注意力权重分配不合理,造成提取到的情感特征中存在噪声。为解决以上问题,该文提出... 目前方面级情感分析主要利用注意力机制完成方面词与上下文的语义交互,提取方面词的情感特征。但是这类方法忽略了上下文与方面词间的句法依存关系,导致注意力权重分配不合理,造成提取到的情感特征中存在噪声。为解决以上问题,该文提出了一种基于情感特征精炼网络的方面级情感分析方法。首先利用双向长短时记忆网络提取方面词和上下文的语义特征,并利用图卷积网络提取与方面词相关的句法依存信息。进而,使用该文的设计情感特征精炼模块计算方面词与上下文之间的语义相关性、句法相关性,从而准确捕获描述给定方面词的情感词,并结合门控机制过滤掉与方面词情感分析无关的冗余上下文词,以去除方面词情感特征中的噪声。最后,使用Softmax函数进行情感分类输出。实验表明,该方法在Lap14、Rest14、Twitter数据集上的准确率分别达到80.37%、85.26%和75.83%,Marco-F_(1)值分别达到75.94%、77.98%和73.80%,优于目前主流方法。 展开更多
关键词 方面级情感分析 门控机制 图卷积神经网络
在线阅读 下载PDF
多智能体深度强化学习研究进展 被引量:8
11
作者 丁世飞 杜威 +2 位作者 张健 郭丽丽 丁玲 《计算机学报》 EI CAS CSCD 北大核心 2024年第7期1547-1567,共21页
深度强化学习(Deep Reinforcement Learning,DRL)在近年受到广泛的关注,并在各种领域取得显著的成功.由于现实环境通常包括多个与环境交互的智能体,多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)获得蓬勃的发展... 深度强化学习(Deep Reinforcement Learning,DRL)在近年受到广泛的关注,并在各种领域取得显著的成功.由于现实环境通常包括多个与环境交互的智能体,多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)获得蓬勃的发展,在各种复杂的序列决策任务上取得优异的表现.本文对多智能体深度强化学习的工作进展进行综述,主要内容分为三个部分.首先,我们回顾了几种常见的多智能体强化学习问题表示及其对应的合作、竞争和混合任务.其次,我们对目前的MADRL方法进行了全新的多维度的分类,并对不同类别的方法展开进一步介绍.其中,我们重点综述值函数分解方法,基于通信的MADRL方法以及基于图神经网络的MADRL方法.最后,我们研究了MADRL方法在现实场景中的主要应用.希望本文能够为即将进入这一快速发展领域的新研究人员和希望获得全方位了解并根据最新进展确定新方向的现有领域专家提供帮助. 展开更多
关键词 多智能体深度强化学习 基于值函数 基于策略 通信学习 图神经网络
在线阅读 下载PDF
基于图的点云研究综述 被引量:2
12
作者 梁循 李志莹 蒋洪迅 《计算机研究与发展》 EI CSCD 北大核心 2024年第11期3870-3896,共27页
点云的处理、传输、语义分割等是3维计算机视觉领域重要的分析任务.现如今,图神经网络和图结构在点云研究方面的有效性已被证实,基于图的点云(graph-based point cloud,GPC)研究不断涌现.因此,一种统一的研究角度、框架和方法论亟待形成... 点云的处理、传输、语义分割等是3维计算机视觉领域重要的分析任务.现如今,图神经网络和图结构在点云研究方面的有效性已被证实,基于图的点云(graph-based point cloud,GPC)研究不断涌现.因此,一种统一的研究角度、框架和方法论亟待形成.系统性梳理了GPC研究的各种应用场景,包括配准、降噪、压缩、表示学习、分类、分割、检测等任务,概括出GPC研究的一般性框架,提出了一条覆盖当前GPC全域研究的技术路线.具体来说,给出了GPC研究的分层概念范畴,包括底层数据处理、中层表示学习、高层识别任务;综述了各领域中的GPC模型或算法,包括静态和动态点云的处理算法、有监督和无监督的表示学习模型、传统或机器学习的GPC识别算法;总结了其中代表性的成果及其核心思想,譬如动态更新每层特征空间对应的最近邻图、分层以及参数共享的动态点聚合模块,结合图划分和图卷积提高分割精度;对比了模型性能,包括总体精度(overall accuracy,OA)、平均精度(mean accuracy,mAcc)、平均交并比(mean intersection over union,mIoU);在分析比较现有模型和方法的基础上,归纳了GPC目前面临的主要挑战,提出相应的研究问题,并展望未来的研究方向.建立的GPC研究框架具有一般性和通用性,为后续研究者从事GPC这个新型交叉领域研究提供了领域定位、技术总结及宏观视角.点云研究的出现,是探测器硬件技术长足进步后应运而生的结果;点云研究的现状表明在理论和实践之间存在一些挑战,一些关键问题还有待解决.同时,点云研究的发展将推动人工智能进入新的时代. 展开更多
关键词 点云 图结构 基于图的点云 图信号处理 时空图 图神经网络
在线阅读 下载PDF
基于胶囊异构图注意力网络的中文表格型数据事实验证 被引量:1
13
作者 杨鹏 查显宇 +1 位作者 赵广振 林茜 《软件学报》 EI CSCD 北大核心 2024年第9期4324-4345,共22页
事实验证旨在检查一个文本陈述是否被给定的证据所支持.由于表格结构上具有依赖性、内容上具有隐含性,以表格作为证据的事实验证任务仍面临很多挑战.现有工作或者利用逻辑表达式来解析基于表格证据的陈述,或者设计表格感知神经网络来编... 事实验证旨在检查一个文本陈述是否被给定的证据所支持.由于表格结构上具有依赖性、内容上具有隐含性,以表格作为证据的事实验证任务仍面临很多挑战.现有工作或者利用逻辑表达式来解析基于表格证据的陈述,或者设计表格感知神经网络来编码陈述-表格对,以此实现基于表格的事实验证任务.但是,这些方法没有充分利用陈述背后隐含的表格信息,从而导致模型的推理性能下降,并且基于表格证据的中文陈述具有更加复杂的语法和语义,也给模型推理带来更大的困难.为此,提出基于胶囊异构图注意力网络(CapsHAN)的中文表格型数据事实验证方法,所提方法能充分理解陈述的结构和语义,进而挖掘和利用陈述所隐含的表格信息,有效提升基于表格的事实验证任务准确性.具体而言,首先通过对陈述进行依存句法分析和命名实体识别来构建异构图,接着对该图采用异构图注意力网络和胶囊图神经网络进行学习和理解,然后将得到的陈述文本表示与经过编码的表格文本表示进行拼接,最后完成结果的预测.更进一步,针对现有中文表格型事实验证数据集匮乏而难以支持基于表格的事实验证方法性能评价的难题,首先对主流TABFACT和INFOTABS表格事实验证英文数据集进行中文转化,并且专门针对中文表格型数据的特点构建了基于UCL国家标准的数据集UCLDS,该数据集将维基百科信息框作为人工注释的自然语言陈述的证据,并被标记为蕴含、反驳或中立3类.UCLDS在同时支持单表和多表推理方面比传统TABFACT和INFOTABS数据集更胜一筹.在上述3个中文基准数据集上的实验结果表明,所提模型的表现均优于基线模型,证明该模型在基于中文表格的事实验证任务上的优越性. 展开更多
关键词 基于表格的事实验证 异构图注意力网络 胶囊图神经网络 依存句法分析 命名实体识别
在线阅读 下载PDF
融合热点与长短期兴趣的图神经网络课程推荐模型 被引量:1
14
作者 刘源 董永权 +2 位作者 陈成 贾瑞 印婵 《计算机科学与探索》 CSCD 北大核心 2024年第6期1600-1612,共13页
近年来大规模在线开放课程(MOOCs)平台为用户提供了海量的学习资源,亟需一种有效的个性化课程推荐方法帮助用户解决信息过载问题。现有的课程推荐方法忽略了课程间的时序性且无法较好地捕获课程间的长距离依赖关系,同时面临用户学习兴... 近年来大规模在线开放课程(MOOCs)平台为用户提供了海量的学习资源,亟需一种有效的个性化课程推荐方法帮助用户解决信息过载问题。现有的课程推荐方法忽略了课程间的时序性且无法较好地捕获课程间的长距离依赖关系,同时面临用户学习兴趣表示和冷启动两个关键问题。基于此,提出一种融合热点与长短期兴趣的图神经网络课程推荐模型(GHLS4CR)。该模型设计无环时序图和无环快捷图两种会话图构建方法来缓解现有方法存在的时序信息丢失和不善于捕获长距离依赖的问题;将用户长短期兴趣进行图级表示,并与热门课程信息进行融合实现个性化推荐,同时缓解冷启动问题。通过在学堂在线(XuetangX)公开数据集MOOCCourse上的大量实验表明,GHLS4CR在个性化课程推荐领域优于FISSA和LESSR等主流推荐模型。与次好的LESSR模型相比,Recall@5提高了13.28%,MRR@5提高了15.50%。 展开更多
关键词 课程推荐 基于会话的推荐 图神经网络 长短期兴趣 冷启动
在线阅读 下载PDF
基于依赖类型剪枝的双特征自适应融合网络用于方面级情感分析 被引量:1
15
作者 郑诚 石景伟 +1 位作者 魏素华 程嘉铭 《计算机科学》 CSCD 北大核心 2024年第3期205-213,共9页
现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法... 现有的模型将基于依赖树的图神经网络用于方面级情感分析,一定程度上提升了模型的分类性能。然而,由于依赖解析技术的限制,语法解析结果的不精确导致依赖树存在大量噪声,使得模型的性能提升有限。此外,一些句子本身并不符合标准的句法结构。以往的研究以同样的置信度利用句法信息和语义信息,没有充分考虑它们对于确定方面词极性的贡献的不同,导致模型在相应的数据集上性能较差。为了克服这些困难,文中提出了一种基于依赖类型剪枝的双特征自适应融合网络。具体来说,该模型使用一种新型的混合方法,命名为依赖关系类型剪枝和邻接矩阵平滑,来缓解句法解析产生的噪声。此外,该模型通过双特征自适应融合模块充分考虑句子的句法信息的可用程度,以一种更灵活的方式将句法特征和语义特征结合起来用于方面级情感分析。在5个公开可用的数据集上进行广泛的实验,结果证明了该方法明显优于基线模型。 展开更多
关键词 方面级情感分析 图神经网络 依赖类型剪枝 双特征自适应融合 深度学习 自然语言处理
在线阅读 下载PDF
基于霍克斯过程和图神经网络的会话推荐
16
作者 杨真真 闫孟儒 +1 位作者 杨永鹏 陈亚杰 《信号处理》 CSCD 北大核心 2024年第4期757-765,共9页
针对传统会话推荐系统(Session-Based Recommendation System, SBRS)往往忽略了项目点击量之间的交互,以及遗漏了会话内项目之间的相对顺序的问题,本文提出了一种基于霍克斯过程和图神经网络(Hawkes Process and Graph Neural Network, ... 针对传统会话推荐系统(Session-Based Recommendation System, SBRS)往往忽略了项目点击量之间的交互,以及遗漏了会话内项目之间的相对顺序的问题,本文提出了一种基于霍克斯过程和图神经网络(Hawkes Process and Graph Neural Network, HPGNN)的会话推荐方法。该方法提出了包含图神经位置感知层和图神经霍克斯层的双流结构,分别学习用户的长期和短期偏好。图神经位置感知层通过门控图神经网络(Gated Graph Neural Network, GGNN)来捕捉各个节点之间的交互关系,得到会话中每个项目的隐向量表示,并引入逐次递减的残差网络,有效地将之前的编码信息与当前网络融合,然后通过位置感知注意力网络来捕捉项目节点在会话中的位置信息,用于学习用户的长期偏好表示。图神经霍克斯层通过将霍克斯过程和GGNN相结合来捕捉连续时间的项目点击量之间的关系,用于更准确的表示用户的短期偏好。最后将两者进行线性组合,来更好地描述用户意图。实验结果表明,提出的HPGNN在Diginetica和Yoochoose1/64两个基准会话推荐数据集上的推荐性能均优于其他会话推荐模型。 展开更多
关键词 会话推荐 推荐系统 图神经网络 霍克斯过程 位置感知注意力网络
在线阅读 下载PDF
基于句法依赖增强图的方面级情感分析
17
作者 廖列法 夏卫欢 杨翌虢 《计算机工程与设计》 北大核心 2024年第6期1857-1864,共8页
方面级情感分析旨在分析句子中特定方面的情感极性,现有研究侧重于利用图神经网络建模上下文与方面的依赖信息,忽略了对上下文中情感词及其词性的挖掘和利用。为此,提出一种基于句法依赖的增强图(syntactic dependency enhancement grap... 方面级情感分析旨在分析句子中特定方面的情感极性,现有研究侧重于利用图神经网络建模上下文与方面的依赖信息,忽略了对上下文中情感词及其词性的挖掘和利用。为此,提出一种基于句法依赖的增强图(syntactic dependency enhancement graph, SDEG)模型,在原始句法依赖图上引入情感知识和词性信息,增强情感词权重和相关词性单词在上下文中的作用。使用双向长短期记忆网络和卷积神经网络捕捉句子的重点语义信息,通过图卷积神经网络建模句法依赖增强图,通过交互注意力机制生成特定方面的上下文语义和语法表示以进行情感极性分类。在多个公共基准数据集上的实验结果表明,所提模型在性能上有明显提升。 展开更多
关键词 方面级情感分析 情感知识 词性 双向长短期记忆网络 卷积神经网络 图卷积神经网络 交互注意力机制
在线阅读 下载PDF
基于双句法交互图注意力网络的方面级情感分析
18
作者 杨长春 刘昊 +1 位作者 张毅 李艺 《计算机工程与设计》 北大核心 2024年第8期2503-2512,共10页
为减少利用未处理的短语树引入的关于方面词错误的句法信息,提出一种双句法交互图注意力网络模型。在现有短语树的基础上通过特定的句法拆分获得面向方面的短语子树,在此基础上,在短语树与依赖树之间利用各自的句法特点建立句法信息的... 为减少利用未处理的短语树引入的关于方面词错误的句法信息,提出一种双句法交互图注意力网络模型。在现有短语树的基础上通过特定的句法拆分获得面向方面的短语子树,在此基础上,在短语树与依赖树之间利用各自的句法特点建立句法信息的交互通道,有效结合短语树与依赖树两棵句法树产生的句法信息。在3个公共数据集上的充分实验结果表明,双句法交互图注意力网络模型均优于当前的主流方法,验证了模型的有效性。 展开更多
关键词 方面级情感分析 图注意力网络 短语树 依赖树 句法信息 句法拆分 句法交互
在线阅读 下载PDF
基于角度的图神经网络高维数据异常检测方法 被引量:2
19
作者 王俊 赖会霞 +1 位作者 万玥 张仕 《计算机工程》 CAS CSCD 北大核心 2024年第3期156-165,共10页
在高维数据空间中,数据大都处于高维空间边缘且分布十分稀疏,由此引起的“维度灾难”问题导致现有异常检测方法无法保证异常检测精度。为解决该问题,提出一种基于角度的图神经网络高维数据异常检测方法A-GNN。首先通过数据空间的均匀采... 在高维数据空间中,数据大都处于高维空间边缘且分布十分稀疏,由此引起的“维度灾难”问题导致现有异常检测方法无法保证异常检测精度。为解决该问题,提出一种基于角度的图神经网络高维数据异常检测方法A-GNN。首先通过数据空间的均匀采样和初始训练数据的扰动来扩充用于训练的数据;然后利用k近邻关系构造训练数据的k近邻关系图,并以k近邻元素距离加权角度的方差作为近邻关系图节点的初始异常因子;最后通过训练图神经网络模型,实现节点间的信息交互,使得相邻节点能够互相学习,从而进行有效的异常评估。在6个自然数据集上将A-GNN方法与9种典型异常检测方法进行实验对比,结果表明:A-GNN在5个数据集中取得了最高的AUC值,其能够大幅提升各种维度数据的异常检测精度,在一些“真高维数据”上异常检测的AUC值提升达40%以上;在不同k值下与3种基于k近邻的异常检测方法相比,A-GNN利用图神经网络节点间的信息交互能有效避免k值对检测结果的影响,方法具有更强的鲁棒性。 展开更多
关键词 异常检测 基于角度的异常评估 图神经网络 高维数据 K近邻
在线阅读 下载PDF
从感知-预测-优化综述图神经网络在电力系统中的应用 被引量:4
20
作者 李卓 王胤喆 +3 位作者 叶林 罗雅迪 宋旭日 张振宇 《中国电力》 CSCD 北大核心 2024年第12期2-16,共15页
随着新型电力系统发电侧、输电侧和用电侧不确定性的日益增加,电力系统拓扑结构关系逐渐复杂、规模程度不断升级。常规欧式空间数据解析方法在表征多源异构和非规则的拓扑结构关系时,往往呈现性能较差、准确度不高的问题。图神经网络(gr... 随着新型电力系统发电侧、输电侧和用电侧不确定性的日益增加,电力系统拓扑结构关系逐渐复杂、规模程度不断升级。常规欧式空间数据解析方法在表征多源异构和非规则的拓扑结构关系时,往往呈现性能较差、准确度不高的问题。图神经网络(graph neural networks,GNNs)能够捕捉到不同节点和边之间的复杂依赖关系,并有效挖掘非欧式空间数据结构中的时空特征,适用于复杂电力系统拓扑结构关系的感知与建模。针对于此,基于前人的研究进展,介绍了GNNs的定义和特点,并分析了GNNs不同变体的特点及其优势。然后,归纳和总结了GNNs在电力系统状态感知、预测、图潮流计算等方面的应用现状,从感知-预测-优化角度探讨了GNNs与新型电力系统的适配关系。最后,针对GNNs潜在的问题难点和未来可行的发展方向进行了总结和展望。 展开更多
关键词 新型电力系统 不确定性 图神经网络 状态感知 预测 图潮流计算
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部