期刊文献+
共找到318篇文章
< 1 2 16 >
每页显示 20 50 100
New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence
1
作者 WANG Jian ZHU Jingyi +1 位作者 SHI Hua LIU Huchen 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1491-1506,共16页
Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose ch... Failure mode and effect analysis(FMEA)is a preven-tative risk evaluation method used to evaluate and eliminate fail-ure modes within a system.However,the traditional FMEA method exhibits many deficiencies that pose challenges in prac-tical applications.To improve the conventional FMEA,many modified FMEA models have been suggested.However,the majority of them inadequately address consensus issues and focus on achieving a complete ranking of failure modes.In this research,we propose a new FMEA approach that integrates a two-stage consensus reaching model and a density peak clus-tering algorithm for the assessment and clustering of failure modes.Firstly,we employ the interval 2-tuple linguistic vari-ables(I2TLVs)to express the uncertain risk evaluations provided by FMEA experts.Then,a two-stage consensus reaching model is adopted to enable FMEA experts to reach a consensus.Next,failure modes are categorized into several risk clusters using a density peak clustering algorithm.Finally,the proposed FMEA is illustrated by a case study of load-bearing guidance devices of subway systems.The results show that the proposed FMEA model can more easily to describe the uncertain risk information of failure modes by using the I2TLVs;the introduction of an endogenous feedback mechanism and an exogenous feedback mechanism can accelerate the process of consensus reaching;and the density peak clustering of failure modes successfully improves the practical applicability of FMEA. 展开更多
关键词 failure mode and effect analysis(FMEA) interval 2-tuple linguistic variable(I2TLV) consensus reaching density peak clustering algorithm
在线阅读 下载PDF
Outlier detection based on multi-dimensional clustering and local density
2
作者 SHOU Zhao-yu LI Meng-ya LI Si-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1299-1306,共8页
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl... Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments. 展开更多
关键词 data MINING OUTLIER DETECTION OUTLIER DETECTION method based on MULTI-DIMENSIONAL clustering and local density (ODBMCLD) algorithm deviation DEGREE
在线阅读 下载PDF
Free clustering optimal particle probability hypothesis density(PHD) filter
3
作者 李云湘 肖怀铁 +2 位作者 宋志勇 范红旗 付强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2673-2683,共11页
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori... As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments. 展开更多
关键词 multiple target tracking probability hypothesis density filter optimal sampling density particle filter random finite set clustering algorithm state extraction
在线阅读 下载PDF
基于K互近邻与核密度估计的DPC算法 被引量:2
4
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
在线阅读 下载PDF
基于ABWO的并行DCNN优化算法 被引量:1
5
作者 毛伊敏 刘映兴 《计算机工程与设计》 北大核心 2025年第2期353-359,共7页
针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异... 针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异性较大的特征;设计一种ResNet-CBAMDW模型,提升模型性能;提出一种基于自适应黑寡妇优化算法的并行训练策略PT-ABWO优化初始参数,加快参数更新速度;提出一种基于大数据基准测试的动态负载均衡策略DLB-BDB,合理分配任务负载,提升集群并行效率。实验结果表明,该算法能够有效提升DCNN在大数据环境下的训练效率。 展开更多
关键词 大数据 并行深度卷积神经网络算法 密度峰值聚类 自适应黑寡妇优化算法 并行训练 基准测试 负载均衡
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
6
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
改进的密度峰值聚类算法在岩体结构面优势分组中的应用
7
作者 王述红 高晨翔 侯钦宽 《东北大学学报(自然科学版)》 北大核心 2025年第3期130-137,共8页
岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,... 岩体稳定性评价依赖于合理的结构面分组,但传统方法存在易受边缘点与异常点影响的弊端.为此,提出一种改进的密度峰值聚类算法用于结构面优势分组.首先,将结构面产状转换为空间坐标,并以单位法向量夹角正弦值的平方作为相似性度量.随后,基于有效性评价指标构建目标函数,并利用乌鸦算法优化截断距离以获取最佳分组结果.通过模拟数据集验证了该算法能够有效减少人为干预,避免异常点干扰,确保聚类结果更加可靠和合理.结果表明,所提方法不仅与传统方法一致性良好,还具有更高的适用性,为工程中结构面优势分组提供了可靠的参考. 展开更多
关键词 密度峰值聚类 乌鸦算法 有效性评价指标 结构面 优势分组
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
8
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-MEANS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
面向工业网络流量的实时入侵检测方法 被引量:2
9
作者 连莲 王文诚 +1 位作者 宗学军 何戡 《沈阳工业大学学报》 北大核心 2025年第1期98-105,共8页
【目的】工业互联网是国家关键基础设施的重要组成部分,其安全性直接关系到国家安全、经济稳定和社会秩序。随着工业互联网的广泛应用,工业控制系统的网络攻击频发,造成了严重的经济损失和社会影响,因此,开发高效的实时入侵检测系统显... 【目的】工业互联网是国家关键基础设施的重要组成部分,其安全性直接关系到国家安全、经济稳定和社会秩序。随着工业互联网的广泛应用,工业控制系统的网络攻击频发,造成了严重的经济损失和社会影响,因此,开发高效的实时入侵检测系统显得尤为重要。传统的入侵检测系统在处理高维度网络流量数据时,往往难以有效区分正常流量和异常流量,尤其是在缺乏异常流量样本的情况下。【方法】为了解决该问题,本研究通过分析某油气集输管线工业控制系统真实网络流量特性,提出了一种结合Suricata的滑动窗口密度聚类工业网络实时异常检测方法。该方法针对工业网络流量特性,利用Suricata的开源性、可扩展性以及滑动窗密度聚类算法的动态检测能力,建立从流量采集解析到实时入侵检测的全过程入侵检测模型。本研究通过分析真实工业控制系统环境中的网络流量特性发现工业网络流量存在一定的周期性,利用基尼系数选取能体现工业网络流量特性混杂程度的特征,实现对工业网络流量降维处理,对降维后的数据使用滑动窗口分组构建工业网络正常流量特征阈值。利用改写Suricata实现实时流量采集与解析,并将实时解析结果输入到所构建的滑动窗口密度聚类入侵检测算法中,通过与工业网络正常流量特征阈值进行对比,快速筛选绝对正常流量组和绝对异常流量组。针对正常流量与异常流量掺杂的组别,通过密度聚类算法将异常流量分离,完成异常流量检测。【结果】将入侵检测方法在油气集输全流程工业场景攻防靶场中应用并开展大量实验,该方法能够有效识别异常流量,检测率达到96%以上,误报率低于3%。所提出的方法可以满足工业网络中异常流量检测高效性、可靠性和实时性需求。【结论】本研究的创新之处在于提供了一种新的工业网络异常流量检测方法,结合Suricata和滑动窗口密度聚类算法,建立了从流量采集解析到实时入侵检测的全过程入侵检测模型,对工业互联网安全防护具有重要的实践价值,为工业网络实时入侵检测提供一种新的研究思路。 展开更多
关键词 工业网络 网络安全 流量解析 特征分析 基尼系数 机器学习 密度聚类算法 入侵检测
在线阅读 下载PDF
基于先验聚类的机电设备环境参数异常检测算法 被引量:1
10
作者 邢鹏 李新娥 《现代电子技术》 北大核心 2025年第6期78-84,共7页
传统的聚类异常数据检测算法在处理高维度、大数据量且异常值分布杂乱的机电设备环境参数时,存在聚类效果差和检测效率低的问题。为此,在原有异常检测算法的基础上提出一种基于先验聚类的机电设备环境参数异常检测算法。该算法改用历史... 传统的聚类异常数据检测算法在处理高维度、大数据量且异常值分布杂乱的机电设备环境参数时,存在聚类效果差和检测效率低的问题。为此,在原有异常检测算法的基础上提出一种基于先验聚类的机电设备环境参数异常检测算法。该算法改用历史数据构建先验聚类,确保聚类构建不会受太多异常环境参数所影响;在选取聚类中心时引入密集度的概念,以确保聚类中心的可靠性,并在选取聚类中心过程中去除已选聚类中心周围的数据点,防止选取的聚类中心集中在某一区域,以此提升聚类效果。进行异常检测时,依次将待检测数据放入先验聚类中进行匹配,一旦测试数据无法匹配任何一个已知聚类,则将其标记为异常数据。实验结果表明:所提算法在机电设备环境参数的异常检测方面具有检测率高、误报率低的特点,在2000例数据异常检测中,其检测准确率达到了97.5%,优于DBSCAN算法的97%以及基础K-means算法的86%;同时,误检率低至0.0106,优于DBSCAN算法的0.0239和基础K-means算法的0.0228。改进后的模型较基础K-means算法和DBSCAN算法在机电设备环境参数异常检测中检测效果更佳,在机电设备环境异常数据检测上具有良好的性能。 展开更多
关键词 机电设备 环境参数 异常数据检测 先验聚类 K-means算法 密集度 聚类匹配
在线阅读 下载PDF
基于改进密度峰值聚类算法的典型负荷曲线提取
11
作者 彭晓璐 王涛 +3 位作者 卢泽钰 廉杰 赵斌 张谦 《南方电网技术》 北大核心 2025年第9期150-161,共12页
针对现有聚类算法在提取典型负荷曲线时存在的非凸簇识别能力不足和参数敏感性等问题,提出基于改进密度峰值聚类(density peak clustering,DPC)算法的典型负荷曲线提取方法。首先,提出基于局部密度和相对距离的自适应聚类中心选取方法,... 针对现有聚类算法在提取典型负荷曲线时存在的非凸簇识别能力不足和参数敏感性等问题,提出基于改进密度峰值聚类(density peak clustering,DPC)算法的典型负荷曲线提取方法。首先,提出基于局部密度和相对距离的自适应聚类中心选取方法,解决传统DPC算法人为选择聚类中心的主观不确定性问题;其次,定义聚类交叉密度和聚类边界密度两个新参数,提出初始聚类校正策略,有效解决非聚类中心点的分配连带错误问题。通过6个二维数据集、4个多维数据集和1个实际REFIT电气负载测量数据集的对比实验表明,所提改进DPC算法在准确率(ACC)、调整兰德指数(ARI)和Fowlkes-Mallows指数(FMI)3个评价指标上均优于传统DPC、K-means和DBSCAN算法,其中ACC、ARI和FMI平均提升25.40%、46.92%和21.83%。算例结果表明,所提改进DPC算法提取的典型负荷曲线更具代表性,可为电力系统灵活性资源优化调控提供更精准的数据支撑。 展开更多
关键词 负荷聚类 改进DPC算法 聚类交叉密度 聚类边界密度
在线阅读 下载PDF
虚拟电厂规模化灵活资源集群优化配置
12
作者 黄蔚亮 王斐 +3 位作者 张扬 莫理莉 兰峻焜 陈皓勇 《太阳能学报》 北大核心 2025年第6期451-461,共11页
针对大型城市电网中灵活资源存在聚合及应用困难的问题,提出一种资源集群优化配置算法。首先,提出基于灵活资源特征及辅助服务需求的分层分区集群策略,并采用基于密度的噪声应用空间聚类算法(DBSCAN)对资源进行聚类,以资源集群参与虚拟... 针对大型城市电网中灵活资源存在聚合及应用困难的问题,提出一种资源集群优化配置算法。首先,提出基于灵活资源特征及辅助服务需求的分层分区集群策略,并采用基于密度的噪声应用空间聚类算法(DBSCAN)对资源进行聚类,以资源集群参与虚拟电厂任务;其次,根据虚拟电厂所需调节功率和资源集群容量潜力,优化配置其参与任务的时间段,实现资源利用效率和虚拟电厂运行效益的最大化;然后,引入状态势博弈理论和惩罚机制,优化时间段内资源配置确保任务过程中的稳定性和可靠性;最后,给出算例,证明该方案下虚拟电厂规模化灵活资源可高效地进行资源优化配置,算法是可行和有效的。 展开更多
关键词 虚拟电厂 博弈论 优化算法 DBSCAN算法 资源集群 惩罚机制
在线阅读 下载PDF
基于最小引力路径的异构多智能体聚类的隐私保护
13
作者 王彩鑫 杨洪勇 王丽丽 《复杂系统与复杂性科学》 北大核心 2025年第2期145-150,共6页
针对异构多智能体系统无法完成聚类的现象,提出基于最小引力路径的异构多智能体系统聚类的隐私保护。引入差分隐私保护拉普拉斯噪声,保护智能体系统信息隐私性;提出感知密度算法,提高对初始中心智能体选取的适应能力;构建引力模型,利用D... 针对异构多智能体系统无法完成聚类的现象,提出基于最小引力路径的异构多智能体系统聚类的隐私保护。引入差分隐私保护拉普拉斯噪声,保护智能体系统信息隐私性;提出感知密度算法,提高对初始中心智能体选取的适应能力;构建引力模型,利用Dijkstra算法计算最小引力路径,确保所有智能体能够被分配到相应组别。实验表明,该算法成功完成异构多智能体系统的聚类分析,同时保障了智能体数据的统计特性,实现了隐私保护。 展开更多
关键词 异构多智能体系统 隐私保护 感知密度算法 跟随聚类算法
在线阅读 下载PDF
双粒度空间存储位置调整的历史轨迹索引
14
作者 李彩云 韩京宇 +3 位作者 缪祝青 王彦之 毛毅 张怡婷 《小型微型计算机系统》 北大核心 2025年第8期1838-1846,共9页
为了支持历史轨迹数据的查询,通过学习型索引取代传统索引以减小索引存储代价和提升查询效率受到广泛关注.时空轨迹数据的分布不均匀,单粒度的模型不能兼容疏密不一致的轨迹数据;如果为每个周期数据分别构建一个模型,模型总存储大小线... 为了支持历史轨迹数据的查询,通过学习型索引取代传统索引以减小索引存储代价和提升查询效率受到广泛关注.时空轨迹数据的分布不均匀,单粒度的模型不能兼容疏密不一致的轨迹数据;如果为每个周期数据分别构建一个模型,模型总存储大小线性增长;如果只维护一个模型,模型性能通常会随着历史轨迹的增多而恶化.因此,提出一种双粒度空间存储位置调整的历史轨迹索引,包括嵌入空间识别、初始周期模型构建和后期存储位置调整3个阶段:首先,利用密度峰值聚类算法将所有轨迹数据根据其稀疏性划分到粗细粒度层,在每个粒度层上,利用希尔伯特曲线获取轨迹点的一维排序,保证时空邻近的轨迹点排序值也接近;接着,在初始周期数据上构建分段线性模型;最后,后期数据利用初始周期构建的分段线性模型预测存储位置,采用Kuhn-Munkres算法解决模型预测存储位置产生位置冲突的问题.模拟和真实数据集上的实验表明,与其它的学习型索引相比,不仅提升了查询性能,而且显著降低了索引大小和模型维护成本,有效地支持以读为主的历史轨迹数据查询. 展开更多
关键词 学习型索引 密度峰值聚类 希尔伯特 Kuhn-Munkres算法
在线阅读 下载PDF
基于反向最近邻的密度估计聚类算法
15
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度聚类算法 子簇融合
在线阅读 下载PDF
基于广义二次相关和改进飞蛾扑火算法的变压器局部放电定位技术
16
作者 蔡谦 钱勇 +2 位作者 徐治仁 王辉 盛戈皞 《电力自动化设备》 北大核心 2025年第7期218-224,共7页
在当前变压器局部放电定位研究中,针对存在复杂噪声环境下对局部放电信号处理不足、信号时延估计误差大、由时延误差引起的定位算法失效等问题,提出了一种基于广义二次相关和改进飞蛾扑火算法的变压器局部放电定位技术。对测得的特高频... 在当前变压器局部放电定位研究中,针对存在复杂噪声环境下对局部放电信号处理不足、信号时延估计误差大、由时延误差引起的定位算法失效等问题,提出了一种基于广义二次相关和改进飞蛾扑火算法的变压器局部放电定位技术。对测得的特高频信号采用广义二次相关求得信号的时延,具有抗噪性能好的优点;对基本飞蛾扑火算法进行改进,对定位方程问题进行求解;采用改进飞蛾扑火算法和几种传统智能优化算法对基本检测函数进行求解,对比最优目标函数值、运算时间和迭代曲线,证明该改进优化算法的正确性和速度性;针对定位检测的误差,采用密度聚类算法,传感器阵列对局放多次测量并对检测到的信号进行排列组合,对得到的多个局放源定位结果基于密度进行聚类,取最大簇的几何中心位置作为最终的局放源位置。通过仿真和现场实验,验证了所提定位检测方法的有效性。 展开更多
关键词 变压器 局部放电 定位 广义二次相关 飞蛾扑火算法 密度聚类算法
在线阅读 下载PDF
基于密度的雷达信号分选干扰分析
17
作者 安磊鑫 程志锋 郑威 《舰船科学技术》 北大核心 2025年第1期159-162,共4页
为了有效反电子侦察系统对舰载雷达脉冲信号的分选识别,从主动干扰侦察系统角度出发,研究了典型聚类方法的原理和特点,根据雷达脉冲数据密度特征,设计脉冲干扰信号对电子侦察系统进行干扰,造成雷达脉冲重复丢失,产生漏批现象,从而影响... 为了有效反电子侦察系统对舰载雷达脉冲信号的分选识别,从主动干扰侦察系统角度出发,研究了典型聚类方法的原理和特点,根据雷达脉冲数据密度特征,设计脉冲干扰信号对电子侦察系统进行干扰,造成雷达脉冲重复丢失,产生漏批现象,从而影响聚类结果,仿真分选结果验证干扰的有效性。 展开更多
关键词 脉冲干扰 数据密度 聚类算法 雷达反侦察
在线阅读 下载PDF
基于智能算法的稳定点自动分析方法研究
18
作者 张超 邓扬 +3 位作者 李爱群 周泰翔 李雨航 钟国强 《振动.测试与诊断》 北大核心 2025年第1期65-72,200,共9页
为了提高辨识稳定图中真实模态的准确性与自动化程度,首先,从稳定点定义方式的角度论述了聚类算法效果欠佳的原因,并采用异阶系统非等权重的定义方式输出稳定点;其次,基于数据挖掘思想,采用改进的辨识聚类结构的有序点(ordering points ... 为了提高辨识稳定图中真实模态的准确性与自动化程度,首先,从稳定点定义方式的角度论述了聚类算法效果欠佳的原因,并采用异阶系统非等权重的定义方式输出稳定点;其次,基于数据挖掘思想,采用改进的辨识聚类结构的有序点(ordering points to identify the clustering structure,简称OPTICS)算法自动清洗稳定点集,通过遍历性搜索的方式确定输入参数;然后,提出结合度矩阵去噪的自适应局部密度谱聚类(local density adaptive spectral clustering,简称SC-DA)算法分析稳定点集,并以簇中值作为模态参数的代表值,实现模态参数的自动化识别;最后,将含有密集模态的外滩大桥作为识别对象进行试验验证。试验结果表明:所提出方法具有较高的精度,与频域分解(frequency domain decomposition,简称FDD)法的频率结果最大相差仅为0.012 3 Hz,且在线识别的准确率达到82.86%,显著高于基于层次聚类的自动识别方法,实现了无人工干预下模态参数的自动、准确识别,具有一定的工程应用前景。 展开更多
关键词 模态参数识别 自动化 聚类分析 辨识聚类结构的有序点算法 自适应局部密度谱聚类算法 随机子空间法 稳定图
在线阅读 下载PDF
高密度PCB锡膏喷印的分层路径规划
19
作者 吴振亚 曹鹏彬 +1 位作者 张聪 彭伊丽 《组合机床与自动化加工技术》 北大核心 2025年第1期57-62,68,共7页
针对传统算法求解高密度印制电路板锡膏喷印路径规划问题存在收敛速度慢、易陷入局部最优的不足,提出了一种融合密度峰值聚类算法和蚁群算法的分层路径规划方法。利用密度峰值聚类算法处理分布呈矩形或线形的高密度焊盘,将原始问题分解... 针对传统算法求解高密度印制电路板锡膏喷印路径规划问题存在收敛速度慢、易陷入局部最优的不足,提出了一种融合密度峰值聚类算法和蚁群算法的分层路径规划方法。利用密度峰值聚类算法处理分布呈矩形或线形的高密度焊盘,将原始问题分解为上层聚类中心与下层小规模子问题集合;蚁群算法求解下层子问题获得子路径集合,求解上层聚类中心得到初始全局路径的重组路线;为避免子路径重组过程中陷入局部最优,利用局部搜索算法对初始全局路径进行二次优化,得到最优全局路径。实验结果表明,该分层路径规划方法降低了全局路径求解的复杂度,提升了算法收敛速度,缩短了加工路径总长度,有效提高了高密度印制电路板锡膏喷印的加工效率。 展开更多
关键词 锡膏喷印 分层路径规划 高密度印制电路板 密度峰值聚类 蚁群算法 局部搜索
在线阅读 下载PDF
基于改进变色龙算法的交通控制子区划分方法 被引量:1
20
作者 张添翼 闫飞 《计算机工程与设计》 北大核心 2025年第1期15-22,共8页
为缓解城市拥堵情况,提出一种基于改进变色龙(Chameleon)算法的交通控制子区划分方法。综合考虑交叉口间距、交通车流量等因素影响,计算各相邻交叉口的流量关联度,构建相似性矩阵;引入密度峰值聚类算法改进变色龙算法,通过度量公式得到... 为缓解城市拥堵情况,提出一种基于改进变色龙(Chameleon)算法的交通控制子区划分方法。综合考虑交叉口间距、交通车流量等因素影响,计算各相邻交叉口的流量关联度,构建相似性矩阵;引入密度峰值聚类算法改进变色龙算法,通过度量公式得到子区划分结果。选取义乌市某区域路网进行模型验证分析,结果表明该方法与常用的固定配时法及谱聚类法相比在平均排队长度上降低7.9%和6.2%,停车次数降低32.6%和16.5%,平均延误时间降低17.8%和11.9%,该划分方法能使城市路网子区划分合理,控制效果显著。 展开更多
关键词 城市交通 信号控制 交叉口关联度 控制子区 变色龙算法 密度峰值聚类 模型验证
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部