To enable simultaneous transmit and receive(STAR)on the same frequency in a densely deployed space with multi-interference sources,this work proposes a digitally-assisted analog selfinterference cancellation method,wh...To enable simultaneous transmit and receive(STAR)on the same frequency in a densely deployed space with multi-interference sources,this work proposes a digitally-assisted analog selfinterference cancellation method,which can acquire reference signals through flexible wired/wireless switching access.Based on this method,the Minimum Mean Square Error algorithm with known channel state information is derived in detail,determining the upper limit of the cancellation performance,and the Adaptive Dithered Linear Search algorithm for real-time engineering cancellation is given.The correctness of theoretical analysis is verified by the practical self-interference channel measured by a vector network analyzer.Furthermore,we have designed and implemented the corresponding multiinterference cancellation prototype with the digitallyassisted structure,capable of handling multiple interferences(up to three)and supporting a large receive bandwidth of 100 MHz as well as a wide frequency coverage from 30 MHz to 3000 MHz.Prototype test results demonstrate that in the presence of three interferences,when the single interference bandwidth is 0.2/2/20 MHz(corresponding to the receive bandwidth of 2/20/100 MHz),the cancellation performance can reach 46/32/22 dB or more.展开更多
The in-band full-duplex(IBFD)mechanism is of interest in beyond 5 G systems due to its potential to enhance spectral efficiency and reduce delay.To achieve the maximum gain of IBFD systems,the significant self-interfe...The in-band full-duplex(IBFD)mechanism is of interest in beyond 5 G systems due to its potential to enhance spectral efficiency and reduce delay.To achieve the maximum gain of IBFD systems,the significant self-interference(SI)must be efficiently suppressed.The challenges of wideband selfinterference cancellation(SIC)lie in the radio frequency(RF)domain,where the performance will be limited by the hardware.This paper reviews current RF cancellation mechanisms and investigates an efficient mechanism for future wideband systems with minimum complexity.The working principle and implementation details of multi-tap cancellers are first introduced,then an optical domain-based RF canceller is reviewed,and a novel low-cost design is proposed.To minimize the cost and complexity of the canceller,the minimum required number of taps are analyzed.Simulation results show that with the commonly used 12-bits analog-to-digital converter(ADC)at the receiver,the novel optical domain-based canceller can enable efficient SIC in the 3 GPP LTE specifications compatible system within 400 MHz bandwidth.展开更多
In MIMO full duplex system,power amplifier(PA) nonlinearity limits the self-interference(SI) cancellation seriously. Most existing methods need to model and estimate the PA nonlinearity in order to reconstruct the SI,...In MIMO full duplex system,power amplifier(PA) nonlinearity limits the self-interference(SI) cancellation seriously. Most existing methods need to model and estimate the PA nonlinearity in order to reconstruct the SI,however the estimation error caused by the mismatch between the estimated PA model and the actual PA property still impacts the cancellation ability,especially when the transmit power is high. In this paper we propose a polarization oblique projection based self-interference cancellation method which does not need to estimate the PA nonlinearity coefficients. It exploits the polarization state information of the signals which is immune to the PA nonlinearity,and establishes an oblique projection operator to cancel the SI. Numerical results and analysis demonstrate that it can cancel the nonlinear SI effectively. Moreover the signal to interfere plus noise ratio(SINR) and the achievable sum rate do not deteriorate when the transmit power is high. Further,the upper bound of the achievable sum rate can be more than twice that of the half duplex.展开更多
In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear disto...In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.展开更多
论述了一种窄带和宽带多波束形成的算法,这种算法所依据的准则是在波束满足指向和振幅要求的约束条件下使阵列输出功率最小。对于 N 元阵列,可同时形成 N-1个独立波束。根据对约束条件的不同控制,利用这种算法可实现波束扫描,形成宽波...论述了一种窄带和宽带多波束形成的算法,这种算法所依据的准则是在波束满足指向和振幅要求的约束条件下使阵列输出功率最小。对于 N 元阵列,可同时形成 N-1个独立波束。根据对约束条件的不同控制,利用这种算法可实现波束扫描,形成宽波束、实现干扰对消或旁瓣对消等。同时还给出了所述算法的计算机模拟结果,结果表明所述算法是很有效的。展开更多
The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical laye...The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical layer gains of FD nodes to the throughput gain of wireless FD networks, but pay little attention to the energy consumptions of FD nodes. In this paper, we propose an energy efficient FD MAC protocol. According to the values of self-interference cancellation coefficients corresponding to the nodes of each FD pair and the signal propagation attenuation, the proposed protocol can adaptively select the communication mode of the FD pair between the full-duplex and half-duplex. Also, the minimum transmit power for FD nodes can be obtained to achieve high energy efficiency. We develop an analytical model to characterize the performance of our protocol. The numerical results show that the proposed MAC protocol can optimize the system throughput and reduce the transmission energy consumptions of nodes simultaneously as compared with those of the existing works.展开更多
By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect R...By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect RF feedback chain isolation usually damages the self-interference cancelation(SIC) performance. To deal with this problem, firstly, we analyze the impact of RF feedback chain isolation on SIC performance. Then a digital preprocessing scheme with RF feedback chain is proposed in the multiple-antenna CCFD architecture. Using both analytical and experimental methods, we find that the proposed scheme achieves a better performance on SIC.展开更多
The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large po...The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large power difference between the devices' own transmission and the useful signal comes from the remote transmitters. To enable the practical FD devices to be implementable,the SI power must be sufficiently suppressed to the level of background noise power,making the received signal-to-interference-plus-noise ratio(SINR) satisfy the decoding requirement. In this paper,the design and implementation of the duplexer for facilitating SI cancellation in FD based wireless communications are investigated,with a new type of duplexer(i.e. an improved directional coupler) designed for improving the spatial suppression of the SI power. Furthermore,the practical circuit boards are designed and verified for the proposed prototype,showing that the spatial suppression capability may be up to 36 d B(i.e. much higher than that attainable in the commonly designed ferrite circulator) by using the proposed design.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62071094in part by the National Key Laboratory of Wireless Communications Foundation under Grant IFN202402in part by the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation under Grant GZC20240217.
文摘To enable simultaneous transmit and receive(STAR)on the same frequency in a densely deployed space with multi-interference sources,this work proposes a digitally-assisted analog selfinterference cancellation method,which can acquire reference signals through flexible wired/wireless switching access.Based on this method,the Minimum Mean Square Error algorithm with known channel state information is derived in detail,determining the upper limit of the cancellation performance,and the Adaptive Dithered Linear Search algorithm for real-time engineering cancellation is given.The correctness of theoretical analysis is verified by the practical self-interference channel measured by a vector network analyzer.Furthermore,we have designed and implemented the corresponding multiinterference cancellation prototype with the digitallyassisted structure,capable of handling multiple interferences(up to three)and supporting a large receive bandwidth of 100 MHz as well as a wide frequency coverage from 30 MHz to 3000 MHz.Prototype test results demonstrate that in the presence of three interferences,when the single interference bandwidth is 0.2/2/20 MHz(corresponding to the receive bandwidth of 2/20/100 MHz),the cancellation performance can reach 46/32/22 dB or more.
基金supported by the research grant from Huawei Technologies(Sweden)ABsupported by the U.K.Engineering and Physical Sciences Research Council(EPSRC)under Grant EP/P009549/1。
文摘The in-band full-duplex(IBFD)mechanism is of interest in beyond 5 G systems due to its potential to enhance spectral efficiency and reduce delay.To achieve the maximum gain of IBFD systems,the significant self-interference(SI)must be efficiently suppressed.The challenges of wideband selfinterference cancellation(SIC)lie in the radio frequency(RF)domain,where the performance will be limited by the hardware.This paper reviews current RF cancellation mechanisms and investigates an efficient mechanism for future wideband systems with minimum complexity.The working principle and implementation details of multi-tap cancellers are first introduced,then an optical domain-based RF canceller is reviewed,and a novel low-cost design is proposed.To minimize the cost and complexity of the canceller,the minimum required number of taps are analyzed.Simulation results show that with the commonly used 12-bits analog-to-digital converter(ADC)at the receiver,the novel optical domain-based canceller can enable efficient SIC in the 3 GPP LTE specifications compatible system within 400 MHz bandwidth.
基金supported by the National Natural Science Foundations of China under Grant No.61501050 and No.61271177
文摘In MIMO full duplex system,power amplifier(PA) nonlinearity limits the self-interference(SI) cancellation seriously. Most existing methods need to model and estimate the PA nonlinearity in order to reconstruct the SI,however the estimation error caused by the mismatch between the estimated PA model and the actual PA property still impacts the cancellation ability,especially when the transmit power is high. In this paper we propose a polarization oblique projection based self-interference cancellation method which does not need to estimate the PA nonlinearity coefficients. It exploits the polarization state information of the signals which is immune to the PA nonlinearity,and establishes an oblique projection operator to cancel the SI. Numerical results and analysis demonstrate that it can cancel the nonlinear SI effectively. Moreover the signal to interfere plus noise ratio(SINR) and the achievable sum rate do not deteriorate when the transmit power is high. Further,the upper bound of the achievable sum rate can be more than twice that of the half duplex.
基金supported in part by the National Natural Science Foundation of China(No.61601027)
文摘In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.
文摘论述了一种窄带和宽带多波束形成的算法,这种算法所依据的准则是在波束满足指向和振幅要求的约束条件下使阵列输出功率最小。对于 N 元阵列,可同时形成 N-1个独立波束。根据对约束条件的不同控制,利用这种算法可实现波束扫描,形成宽波束、实现干扰对消或旁瓣对消等。同时还给出了所述算法的计算机模拟结果,结果表明所述算法是很有效的。
基金supported by the National Natural Science Foundation of China (No. 61401330)Natural Science Foundation of Shaanxi Province of China (No. 2016JQ6027)
文摘The wireless full-duplex(FD) nodes can transmit and receive at the same time using the same frequency-band. Currently, the latest FD media access control(MAC) protocols mainly focus on how to convert the physical layer gains of FD nodes to the throughput gain of wireless FD networks, but pay little attention to the energy consumptions of FD nodes. In this paper, we propose an energy efficient FD MAC protocol. According to the values of self-interference cancellation coefficients corresponding to the nodes of each FD pair and the signal propagation attenuation, the proposed protocol can adaptively select the communication mode of the FD pair between the full-duplex and half-duplex. Also, the minimum transmit power for FD nodes can be obtained to achieve high energy efficiency. We develop an analytical model to characterize the performance of our protocol. The numerical results show that the proposed MAC protocol can optimize the system throughput and reduce the transmission energy consumptions of nodes simultaneously as compared with those of the existing works.
基金supported by the National Natural Science Foundation of China under Grants No.61601064,No.61471108,No.61601065,and No.41404102supported by the Sichuan Youth Science and Technology Foundation under Grant No.2016JQ0012
文摘By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect RF feedback chain isolation usually damages the self-interference cancelation(SIC) performance. To deal with this problem, firstly, we analyze the impact of RF feedback chain isolation on SIC performance. Then a digital preprocessing scheme with RF feedback chain is proposed in the multiple-antenna CCFD architecture. Using both analytical and experimental methods, we find that the proposed scheme achieves a better performance on SIC.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 5G research program of China Mobile Research Institute (No.[2015] 0615)+1 种基金Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘The full-duplex(FD) based wireless communication devices,which are capable of concurrently transmitting and receiving signals with a single frequency band,suffer from a severe self-interference(SI) due to the large power difference between the devices' own transmission and the useful signal comes from the remote transmitters. To enable the practical FD devices to be implementable,the SI power must be sufficiently suppressed to the level of background noise power,making the received signal-to-interference-plus-noise ratio(SINR) satisfy the decoding requirement. In this paper,the design and implementation of the duplexer for facilitating SI cancellation in FD based wireless communications are investigated,with a new type of duplexer(i.e. an improved directional coupler) designed for improving the spatial suppression of the SI power. Furthermore,the practical circuit boards are designed and verified for the proposed prototype,showing that the spatial suppression capability may be up to 36 d B(i.e. much higher than that attainable in the commonly designed ferrite circulator) by using the proposed design.