期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
聚类佳点集交叉的约束优化混合进化算法 被引量:19
1
作者 龙文 梁昔明 +1 位作者 徐松金 陈富 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1753-1761,共9页
提出一种基于聚类佳点集多父代交叉和自适应约束处理技术的混合进化算法用于求解约束优化问题.新算法的主要特点是:在搜索机制方面,利用佳点集方法构造初始化种群,使个体能够均匀地分布在整个搜索空间.然后根据父代个体的相似度将种群... 提出一种基于聚类佳点集多父代交叉和自适应约束处理技术的混合进化算法用于求解约束优化问题.新算法的主要特点是:在搜索机制方面,利用佳点集方法构造初始化种群,使个体能够均匀地分布在整个搜索空间.然后根据父代个体的相似度将种群个体进行聚类分析,从聚类中随机选择个体进行佳点集多父代交叉操作,利用多个父代个体所携带的信息产生新的具有代表性的子代个体,能够维持和增加种群的多样性.另外,引入局部搜索策略以提高算法局部搜索能力和收敛速度.在约束处理技术上,新算法引入了一个自适应约束处理技术,即根据当前种群中可行解的比例自适应选择不同的个体比较准则.通过15个标准测试函数验证了新算法的有效性. 展开更多
关键词 约束优化 进化算法 聚类 自适应 佳点集
在线阅读 下载PDF
基于粒子群优化的带障碍约束空间聚类分析 被引量:11
2
作者 李晓晴 焦素敏 +2 位作者 张雪萍 朱淑琴 杜振芳 《计算机工程与设计》 CSCD 北大核心 2007年第24期5924-5927,共4页
聚类分析是空间数据挖掘的主要方法之一。传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性。在分析K中心聚类方法易陷入局部极小值和对初始值敏感的基础上,提出了一种新的聚类方法——基于粒... 聚类分析是空间数据挖掘的主要方法之一。传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性。在分析K中心聚类方法易陷入局部极小值和对初始值敏感的基础上,提出了一种新的聚类方法——基于粒子群优化的带障碍约束空间聚类方法。实验结果表明,该聚类方法不仅使得聚类结果更具实际意义,而且在全局寻优能力方面明显优于K中心聚类方法,且有较快的收敛速度。 展开更多
关键词 空澡数据挖掘 空间聚类 K中心算法 粒子群算法 障碍约束
在线阅读 下载PDF
粒子群K-Medoids带障碍约束空间聚类分析研究 被引量:6
3
作者 张雪萍 王家耀 +1 位作者 范中山 邓高峰 《小型微型计算机系统》 CSCD 北大核心 2009年第10期2025-2029,共5页
空间聚类分析是空间数据挖掘研究领域中的一个重要研究课题.传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性.本文在分析粒子群优化算法和划分算法的基础上,研究一种基于粒子群和划分相结合的... 空间聚类分析是空间数据挖掘研究领域中的一个重要研究课题.传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性.本文在分析粒子群优化算法和划分算法的基础上,研究一种基于粒子群和划分相结合的带障碍约束空间聚类分析方法,设计了一个粒子群K-Medoids带障碍约束空间聚类分析算法.对比实验表明,该方法不仅兼顾了局部收敛和全局收敛性能,又充分考虑到了现实障碍物对聚类结果的影响,使得聚类结果更具实际意义.与遗传K-Medoids带障碍约束空间聚类分析相比,该方法具有更好的可伸缩性,且所需输入的参数相对较少,更适合于对聚类速度要求较高的动态约束条件场合. 展开更多
关键词 空间聚类 K-Medoids算法 粒子群优化算法 障碍约束
在线阅读 下载PDF
基于演化算法的带故障约束空间聚类分析 被引量:3
4
作者 王媛妮 边馥苓 《计算机科学》 CSCD 北大核心 2009年第12期197-198,222,共3页
现实世界当中的各种约束条件限制了空间聚类必须考虑这些限制条件的存在。主要研究带障碍物的空间聚类,采用K-中心点算法进行聚类分析,在解决空间对象绕过障碍物的最短距离时引进改进的郭涛算法进行求解,对于中小规模数据体现了较高的... 现实世界当中的各种约束条件限制了空间聚类必须考虑这些限制条件的存在。主要研究带障碍物的空间聚类,采用K-中心点算法进行聚类分析,在解决空间对象绕过障碍物的最短距离时引进改进的郭涛算法进行求解,对于中小规模数据体现了较高的执行效率。通过理论分析和实验验证,该算法是可行的。 展开更多
关键词 空间聚类 障碍约束 演化算法
在线阅读 下载PDF
带障碍约束的遗传K中心空间聚类分析 被引量:5
5
作者 张雪萍 王家耀 《计算机工程》 CAS CSCD 北大核心 2007年第4期168-170,共3页
空间聚类分析是空间数据挖掘中的一个重要研究课题。传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性。讨论了带障碍约束的空间聚类问题,研究了一种基于遗传和划分相结合的带障碍约束空间数据... 空间聚类分析是空间数据挖掘中的一个重要研究课题。传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性。讨论了带障碍约束的空间聚类问题,研究了一种基于遗传和划分相结合的带障碍约束空间数据聚类分析方法,设计了一个带障碍约束的遗传K中心空间聚类分析算法。对比实验表明,该方法兼顾了局部收敛和全局收敛性能,考虑到了现实障碍物对聚类结果的影响,使得聚类结果更具有实际意义,其结果优于传统K中心聚类及单纯的遗传聚类,不足之处是其计算速度相对较慢。 展开更多
关键词 空间数据挖掘 空间聚类 遗传算法 K中心算法 障碍约束
在线阅读 下载PDF
一种基于簇类进化的电力经济负荷分配优化算法 被引量:4
6
作者 陈皓 潘晓英 张洁 《计算机研究与发展》 EI CSCD 北大核心 2016年第7期1561-1575,共15页
电力经济负荷分配不仅能保证电力系统安全稳定地运行、延长机组使用寿命,还能节省能源,最大化电力企业的经济效益.此类问题可归为一种具有高维、不可微目标函数及多个非线性约束的数值优化问题.提出了一种新型的全局优化算法——簇类进... 电力经济负荷分配不仅能保证电力系统安全稳定地运行、延长机组使用寿命,还能节省能源,最大化电力企业的经济效益.此类问题可归为一种具有高维、不可微目标函数及多个非线性约束的数值优化问题.提出了一种新型的全局优化算法——簇类进化算法(cluster evolutionary algorithm,CEA),并将其应用于求解ELD问题.CEA利用聚类过程在进化个体间构建一定结构的连接关系,并利用这种虚拟的簇类化组织来协调和控制系统的优化计算过程,提高群体的问题空间搜索效率以及抗早熟能力.在仿真实验中13个典型测试函数和3个IEEE系统被用于对CEA的性能进行检验.实验数据显示CEA对13个约束数值优化问题可用较小的计算代价获得较高质量的解,而对3个测试系统的计算结果则要好于目前已报道的最佳解.实验数据的统计分析显示CEA是一种高效的数值优化算法,可作为一种有效的ELD问题求解方法. 展开更多
关键词 进化算法 群体聚类机制 簇类进化搜索 约束数值优化 经济负荷分配
在线阅读 下载PDF
基于改进演化算法的空间数据聚类方法 被引量:1
7
作者 兰小机 徐红伟 +1 位作者 潘伟丰 苏建强 《计算机工程》 CAS CSCD 北大核心 2008年第22期29-31,共3页
分析空间数据的特点和用常规方法进行空间数据聚类分析的难点与不足,提出一种基于改进的演化算法空间数据聚类方法——SDCEA。解决用传统方法进行空间数据聚类分析时存在的问题,增强聚类分析方法的灵活性和有效性。实验结果表明,对于空... 分析空间数据的特点和用常规方法进行空间数据聚类分析的难点与不足,提出一种基于改进的演化算法空间数据聚类方法——SDCEA。解决用传统方法进行空间数据聚类分析时存在的问题,增强聚类分析方法的灵活性和有效性。实验结果表明,对于空间数据的聚类分析问题,该算法具有很好的性能。 展开更多
关键词 空间数据 数据挖掘 演化算法 聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部