期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8的玉米害虫识别定位系统
1
作者 邹鑫 胡艳茹 《计算机应用》 北大核心 2025年第S1期282-288,共7页
为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫... 为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。 展开更多
关键词 害虫 YOLOv8 大型可分离卷积核注意力 空间快速金字塔池化 识别 定位
在线阅读 下载PDF
基于能见度增强的森林火灾烟雾检测方法
2
作者 李铜 陈才华 刘军军 《计算机应用》 北大核心 2025年第S1期251-256,共6页
针对当前森林火灾烟雾检测方法的烟雾识别准确度低和网络模型规模较大的问题,提出一种利于部署到边缘计算设备的基于YOLOv8的森林火灾烟雾检测方法。首先,基于YOLOv8框架,用GD(Gather and Distribute)机制替换YOLOv8中CSP(Cross Stage P... 针对当前森林火灾烟雾检测方法的烟雾识别准确度低和网络模型规模较大的问题,提出一种利于部署到边缘计算设备的基于YOLOv8的森林火灾烟雾检测方法。首先,基于YOLOv8框架,用GD(Gather and Distribute)机制替换YOLOv8中CSP(Cross Stage Partial)结构的Neck部分,增强特征融合的能力,提高网络的预测精度;其次,使用深度可分离卷积(DWConv)模块替换网络Backbone部分的普通卷积模块;最后,提出Enhanced-SPPF(Enhanced Spatial Pyramid Pooling Fast)模块,降低模型参数量和计算量,得到模型的轻量化版本——YOLO-DE-Tiny模型。此外,使用烟雾能见度增强模块进一步提高模型在森林环境下对烟雾画面的检测精度。在火灾科学国家重点实验室(SKLFS)数据集上的实验结果表明,YOLO-DE-Tiny对火灾烟雾检测的查准率达到了87.1%;而在使用烟雾能见度增强模块后,查准率提升到90.9%。可见,所提方法具有较高的森林火灾烟雾检测准确率。 展开更多
关键词 森林火灾烟雾检测 YOLOv8 GD机制 Enhanced-sppf 能见度增强
在线阅读 下载PDF
基于YOLOv8n的航拍图像小目标检测算法 被引量:7
3
作者 齐向明 严萍萍 姜亮 《计算机工程与应用》 CSCD 北大核心 2024年第24期200-210,共11页
针对航拍图像小目标检测中存在目标密集和相互遮挡问题,提出一种基于YOLOv8n的航拍图像小目标检测算法。在主干网络末段,置换C2f中Bottleneck为改进后的FasterNet,保持通道数并提升收敛速度;替换SPPF中CBS激活函数SiLU为ReLU使输入负值... 针对航拍图像小目标检测中存在目标密集和相互遮挡问题,提出一种基于YOLOv8n的航拍图像小目标检测算法。在主干网络末段,置换C2f中Bottleneck为改进后的FasterNet,保持通道数并提升收敛速度;替换SPPF中CBS激活函数SiLU为ReLU使输入负值置零,在CBS后引入SE注意力机制扩张感受野,保留更多小目标特征。输出端检测头前嵌入高效多尺度注意力机制EMA获取更多细节信息,进一步提高小目标关注度。将基线网络损失函数CIoU替换成Wise IoU,提供增益分配策略,专注普通质量锚框,提高网络泛化能力。在数据集VisDrone2021和RSOD上做消融实验和对比实验,相较于基线算法,mAP@0.5分别提升5.1和7.2个百分点,mAP@0.5:0.95分别提升4.4和2.1个百分点,表明检测精度指标显著提升;在公开数据集VOC2007+2012上做泛化实验,mAP@0.5提升3.8个百分点,表明具有良好的鲁棒性。 展开更多
关键词 航拍图像 小目标检测 YOLOv8n FasterNet sppf模块 高效多尺度注意力机制(EMA) Wise IoU
在线阅读 下载PDF
基于改进YOLOX-m的安全帽佩戴检测 被引量:8
4
作者 王晓龙 江波 《计算机工程》 CAS CSCD 北大核心 2023年第12期252-261,共10页
安全帽佩戴检测是安全监控系统中的重要组成部分,其检测精度取决于目标分类、小目标检测、域迁移差异等因素。针对现有基于YOLOX-m模型的安全帽佩戴检测算法通常存在分类精度较低、检测目标不完整、轻量化模型性能下降等问题,构建一种... 安全帽佩戴检测是安全监控系统中的重要组成部分,其检测精度取决于目标分类、小目标检测、域迁移差异等因素。针对现有基于YOLOX-m模型的安全帽佩戴检测算法通常存在分类精度较低、检测目标不完整、轻量化模型性能下降等问题,构建一种基于多阶段网络训练策略的改进YOLOX-m模型。首先对YOLOX-m主干特征网络卷积块的堆叠次数进行重新设计,在减小网络规模的同时最大化模型性能,然后将残差化重参视觉几何组与快速空间金字塔池化相结合,提高检测精度和推理速度。设计一种多阶段网络训练策略,将训练集和测试集拆分成多个组,并结合推理阶段生成的伪标签进行多次网络训练,以减少域迁移差异,获得更高的检测精度。实验结果表明,与YOLOX-m模型相比,改进YOLOX-m模型的推理延迟降低了5 ms,模型大小减少了4.7 MB,检测精度提高了1.26个百分点。 展开更多
关键词 安全帽佩戴检测 深度学习 残差化重参视觉几何组 快速空间金字塔池化 多阶段网络训练策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部