期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
采用多尺度特征增强的路面病害检测模型 被引量:2
1
作者 胡鹏 夏晓华 +3 位作者 钟预全 段智威 姚运仕 成高立 《西安交通大学学报》 北大核心 2025年第2期156-169,共14页
针对现有网络多尺度特征提取能力不足造成路面病害因尺寸差异难以完全识别的问题,提出了一种多尺度特征增强的路面病害检测模型。构建基于混合空洞卷积的快速空间金字塔池化模块,通过堆叠不同膨胀系数的空洞卷积进一步扩大网络感受野,... 针对现有网络多尺度特征提取能力不足造成路面病害因尺寸差异难以完全识别的问题,提出了一种多尺度特征增强的路面病害检测模型。构建基于混合空洞卷积的快速空间金字塔池化模块,通过堆叠不同膨胀系数的空洞卷积进一步扩大网络感受野,以实现更大范围上下文信息的捕捉,并保留更多的空间信息;设计多路径特征融合网络,通过多分支和跳跃连接实现跨层级的特征捕捉,并减少特征融合过程中的信息丢失;采用K-means聚类算法结合交叉比获得合理的瞄点框;在损失函数中,设计一种面积惩罚项并设置下降梯度,提高预测框回归精度与效率;通过引入跨通道交互的高效注意力实现模型重要通道间的交互。实验结果表明:所提模型的检测精度比原模型YOLOv5s提高了4.0%;与Faster R-CNN、CenterNet等经典模型和YOLOv8s、YOLOv7n-tiny等先进模型相比,检测精度提高了1.0%~17.9%。模型经TensorRT加速引擎优化加速后,在NVIDIA Jetson TX2与NVIDIA Jetson Nano平台上的检测速率提高近1倍,同时不影响检测精度。 展开更多
关键词 路面病害检测 多尺度特征增强 混合空洞卷积 特征融合网络 高效通道注意力 嵌入式平台
在线阅读 下载PDF
基于双曲图卷积神经网络的切片级漏洞检测方法
2
作者 陈旭 陈子雄 +2 位作者 景永俊 王叔洋 宋吉飞 《计算机工程与科学》 北大核心 2025年第5期851-863,共13页
针对源代码漏洞检测领域中存在的挑战,特别是现有方法在代码图精准嵌入和捕获其复杂层次结构方面的不足,提出了一种创新的基于双曲图卷积神经网络的切片级源代码漏洞检测方法VulDHGCN。该方法融合了图卷积神经网络和双曲几何的强大表达... 针对源代码漏洞检测领域中存在的挑战,特别是现有方法在代码图精准嵌入和捕获其复杂层次结构方面的不足,提出了一种创新的基于双曲图卷积神经网络的切片级源代码漏洞检测方法VulDHGCN。该方法融合了图卷积神经网络和双曲几何的强大表达能力,更全面地嵌入和保留了源代码的结构特征,有效降低了代码图嵌入过程中的信息失真。为了全面评估VulDHGCN的有效性,选择了3种传统的基于规则的静态漏洞检测方法和3种先进的基于模型的漏洞检测方法作为对比基线方法。实验结果表明,在多个关键性能指标上,VulDHGCN均优于基线方法。具体而言,VulDHGCN的准确率、精确率、召回率和F_(1)得分分别达到了96.52%,92.31%,85.12%和88.57%,相较于基线漏洞检测方法,F_(1)分数提高了6.62%~153.92%,具有明显的优势。这不仅证明了VulDHGCN方法的有效性,也为深度学习在源代码漏洞检测领域的进一步应用提供了新的视角和方法。 展开更多
关键词 漏洞检测 切片级别 低失真嵌入 双曲空间 图卷积神经网络
在线阅读 下载PDF
基于压缩图像与YOLOv5模型的架空输电线路缺陷检测技术 被引量:1
3
作者 刘敏 姜亮 +2 位作者 田杨阳 张璐 陈岑 《沈阳工业大学学报》 北大核心 2025年第2期152-159,共8页
【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,... 【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,无论何种方式都需要处理大量可视化、红外或者紫外照片。但由于输电线路的特殊性,架设条件涉及多种环境,其巡检图像背景通常较为复杂,采用人工复核审查的方式精度较高,但对经验依赖较大且效率极低。如何快速、准确地识别架空线路巡检图片是架空输电线路缺陷识别的关键。传统输电线路巡检图片识别方法在复杂背景的干扰下,容易出现缺陷识别精确度不高的问题。【方法】为提高架空输电线路巡检图像复杂背景下的检测准确率,提出了一种兼顾识别效率和准确性的缺陷检测方法。基于压缩图像技术并结合YOLOv5模型,设计了一种基于稀疏卷积的非对称特征聚合压缩算法,将原始图像通过编码减少图像存储所需空间以便于存储和传输,经过信息通道传输到解密器后,再将压缩图像进行解码复原以提升局部集合特征的学习效率。同时,通过融入通道空间注意力模块从特征图中得到注意力通道权重矩阵和空间权重矩阵,并通过权重矩阵判断特征图区域的重要程度,完成对YOLOv5模型处理效率的提升。【结果】将压缩恢复后的图像输入改进YOLOv5模型中,利用通道注意力模块(CAM)和空间注意力模块(SAM)分别对图像进行通道与空间上的注意力数据处理,通过全局平均池化和最大池化处理增强目标区域的特征,并引入空间注意力模块增强通道注意力对特征位置信息的关注,以检测出存在缺陷的设备,并通过实验验证了方法的有效性。【结论】以某架空线路的巡检图像数据集为基础,对检测方法开展训练与测试,结果表明,巡检图像经所提技术压缩后,尺寸明显减小,恢复后的图像尺寸较原图约降低了3 MB且未出现失真;改进YOLOv5模型具有较高的检测精确度,其检测准确率和时间分别为0.91和0.87 s,算法在降低图像尺寸提升检测速度的同时保证了检测准确率。 展开更多
关键词 架空输电线路 缺陷检测 图像压缩 改进YOLOv5模型 非对称特征聚合编解码网络 通道空间注意力模块 逐通道稀疏残差卷积 检测准确率
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
4
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于融合模型的网络安全态势感知方法 被引量:8
5
作者 郭尚伟 刘树峰 +3 位作者 李子铭 欧阳德强 王宁 向涛 《计算机工程》 CAS CSCD 北大核心 2024年第11期1-9,共9页
伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在... 伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在数据特征提取及较长时间序列数据处理能力不足的问题,提出一种融合堆栈稀疏自编码器(SSAE)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AM)的模型。通过SSAE和CNN提取数据特征,利用AM强化BiGRU对关键信息的关注度,实现对异常流量的攻击类别判定,并结合网络安全态势量化指标,对网络安全态势进行量化评分并划分等级。实验结果表明,融合模型在各项指标上均优于传统深度学习模型,能够准确感知网络态势。 展开更多
关键词 态势感知 威胁检测 堆叠稀疏自编码器 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于双向长短时记忆和卷积Transformer的声学词嵌入模型 被引量:3
6
作者 高芸芸 赵腊生 张强 《计算机应用》 CSCD 北大核心 2024年第1期123-128,共6页
示例查询语音关键词检测中,卷积神经网络(CNN)或者循环神经网络(RNN)提取到的声学词嵌入语音信息有限,为更好地表示语音内容以及改善模型的性能,提出一种基于双向长短时记忆(Bi-LSTM)和卷积Transformer的声学词嵌入模型。首先,使用Bi-L... 示例查询语音关键词检测中,卷积神经网络(CNN)或者循环神经网络(RNN)提取到的声学词嵌入语音信息有限,为更好地表示语音内容以及改善模型的性能,提出一种基于双向长短时记忆(Bi-LSTM)和卷积Transformer的声学词嵌入模型。首先,使用Bi-LSTM提取特征、对语音序列进行建模,并通过叠加方式来提高模型的学习能力;其次,为了能在捕获全局信息的同时学习到局部信息,将CNN和Transformer编码器并联连接组成卷积Transformer,充分利用它在特征提取上的优势,聚合更多有效的信息,提高嵌入的区分性。在对比损失约束下,所提模型平均精度达到了94.36%,与基于注意力的Bi-LSTM模型相比,平均精度提高了1.76%。实验结果表明,所提模型可以有效改善模型性能,更好地实现示例查询语音关键词检测。 展开更多
关键词 卷积神经网络 声学词嵌入 语音信息 示例查询语音关键词检测 循环神经网络
在线阅读 下载PDF
面向嵌入式平台的手势轨迹识别
7
作者 王绎茗 高美凤 《传感器与微系统》 CSCD 北大核心 2024年第9期161-164,168,共5页
针对大部分嵌入式平台计算能力较弱、无法实时运行基于神经网络的应用程序的情况,提出了一种基于Anchor-Free轻量化卷积神经网络(CNN)的手势交互方法。该方法缓解了Anchor-Based检测的弊端,通过神经网络实时检测人体手部,并利用动态时... 针对大部分嵌入式平台计算能力较弱、无法实时运行基于神经网络的应用程序的情况,提出了一种基于Anchor-Free轻量化卷积神经网络(CNN)的手势交互方法。该方法缓解了Anchor-Based检测的弊端,通过神经网络实时检测人体手部,并利用动态时间规整(DTW)算法对手势轨迹进行分类。神经网络参数量仅有0.22 M,在自建手部检测数据集上的平均精度均值(mAP)交并比(IoU)=0.50︰0.95可以达到68%。在RK3568嵌入式平台上,每帧推理和后处理时间仅有31 ms,轨迹分类耗时仅有43 ms,CPU使用率仅有34%,满足实时性要求。 展开更多
关键词 轻量化卷积神经网络 无锚框 目标检测 手势分类 嵌入式系统
在线阅读 下载PDF
基于深度卷积神经网络的小目标检测算法 被引量:27
8
作者 李航 朱明 《计算机工程与科学》 CSCD 北大核心 2020年第4期649-657,共9页
针对YOLO目标检测算法在小目标检测方面存在的不足,以及难以在嵌入式平台上达到实时性的问题,设计出了一种基于YOLO算法改进的dense_YOLO目标检测算法。该算法共分为2个阶段:特征提取阶段和目标检测回归阶段。在特征提取阶段,借鉴Dense... 针对YOLO目标检测算法在小目标检测方面存在的不足,以及难以在嵌入式平台上达到实时性的问题,设计出了一种基于YOLO算法改进的dense_YOLO目标检测算法。该算法共分为2个阶段:特征提取阶段和目标检测回归阶段。在特征提取阶段,借鉴DenseNet结构的思想,设计了新的基于深度可分离卷积的slim-densenet特征提取模块,增强了小目标的特征传递,减少了参数量,加快了网络的传播速度。在目标检测阶段,提出自适应多尺度融合检测的思想,将提取到的特征进行融合,在不同的特征尺度上进行目标的分类和回归,提高了对小目标的检测准确率。实验结果表明:在嵌入式平台上,针对小目标,本文提出的dense_YOLO目标检测算法相较原YOLO算法mAP指标提高了7%,单幅图像检测时间缩短了15 ms,网络模型大小减少了90 MB,明显优于原算法。 展开更多
关键词 目标检测 嵌入式平台 小目标 深度卷积神经网络 多尺度预测
在线阅读 下载PDF
基于MPSoC的遥感图像目标检测算法硬件加速研究 被引量:7
9
作者 李强 武文波 何明一 《航天返回与遥感》 CSCD 北大核心 2022年第1期58-68,共11页
遥感图像目标实时检测是遥感应用领域的关键技术问题之一。深度神经网络遥感图像目标检测准确率高,但此类网络通常结构复杂、参数多、计算量大,对计算资源和存储的需求较高,设计轻量化软硬件系统实现星载边缘端部署较为困难。针对上述问... 遥感图像目标实时检测是遥感应用领域的关键技术问题之一。深度神经网络遥感图像目标检测准确率高,但此类网络通常结构复杂、参数多、计算量大,对计算资源和存储的需求较高,设计轻量化软硬件系统实现星载边缘端部署较为困难。针对上述问题,文章提出了一种基于多处理器片上系统(MPSoC)现场可编程门阵列(FPGA)的遥感图像目标检测算法硬件加速方案。首先研究了适合星载边缘端部署的目标检测算法;然后设计了深度卷积神经网络并行加速计算结构和引擎,采用有限精度运算实现网络参数,使其数字量减少了75%,显著降低了计算和存储开销;最后基于MPSoC FPGA处理器实现了飞机目标检测的原型演示验证系统。实验结果表明,文章提出的遥感图像目标检测系统方案的目标检测精度可达92%以上;与基于嵌入式CPU、CPU、GPU的方案相比,单帧图像推理时间从100s、1000ms、100ms缩短至10ms级,可以满足遥感图像目标检测实时处理要求,具有一定的工程应用价值。 展开更多
关键词 目标检测 多处理器片上系统 现场可编程门阵列 深度卷积神经网络 嵌入式 硬件 加速 遥感应用
在线阅读 下载PDF
基于稀疏轻量卷积神经网络的管道泄漏检测 被引量:7
10
作者 刘杰 朱正伟 《电子测量技术》 北大核心 2022年第19期131-135,共5页
针对传统供水管网泄漏检测问题,本文提出了一种基于稀疏轻量卷积神经网络的管道泄漏检测算法。首先通过声音传感器采集管道泄漏的声音信号,经过立体声转换、重采样、长度对齐等预处理操作后,将其转换成梅尔频谱图。然后,构建一种稀疏轻... 针对传统供水管网泄漏检测问题,本文提出了一种基于稀疏轻量卷积神经网络的管道泄漏检测算法。首先通过声音传感器采集管道泄漏的声音信号,经过立体声转换、重采样、长度对齐等预处理操作后,将其转换成梅尔频谱图。然后,构建一种稀疏轻量化的卷积神经网络模型来对梅尔频谱图进行特征抽取和泄漏检测。针对声音特征图的稀疏和时延性质,本文采用Inception网络结构来进行提高模型的特征抽取能力。此外,因为该模型需要被部署到边缘侧,因此设计了一种基于SqueezeNet的轻量化卷积神经网络模型来减少模型的参数,降低模型复杂度。实验结果表明,提出的管道泄漏检测算法在保证复杂度较低的同时具有较高的识别准确率。 展开更多
关键词 管道泄漏检测 卷积神经网络 梅尔频谱图 稀疏特征
在线阅读 下载PDF
时空深度特征AP聚类的稀疏表示视频异常检测算法 被引量:12
11
作者 胡正平 张乐 尹艳华 《信号处理》 CSCD 北大核心 2019年第3期386-395,共10页
针对异常行为检测问题,提出基于时空深度特征的AP聚类稀疏表示视频异常检测方法。由于视频序列中大量背景信息及有效信息分布不均匀的情况,首先利用光流结合非均匀的细胞分割对视频的运动目标进行提取并得到空间尺寸大小不同的时空兴趣... 针对异常行为检测问题,提出基于时空深度特征的AP聚类稀疏表示视频异常检测方法。由于视频序列中大量背景信息及有效信息分布不均匀的情况,首先利用光流结合非均匀的细胞分割对视频的运动目标进行提取并得到空间尺寸大小不同的时空兴趣块。其次利用三维卷积神经网络提取不同时空兴趣块的时空深度特征从而对原始视频序列进行三维描述。然后在字典学习时,采用AP聚类方法,将训练样本中具有代表性的特征作为字典,极大降低字典维度以及稀疏表示方法对计算内存的要求。本文将测试样本进行AP聚类后仅对具有代表性的聚类中心进行检测,在减少实验时间的同时削减了阈值对检测效果的敏感度。实验结果表明,与现有的检测方法相比本文方法具有优越性。 展开更多
关键词 异常检测 三维卷积神经网络 时空兴趣块 时空深度特征 AP聚类 稀疏表示
在线阅读 下载PDF
基于1DCNN-BP的非侵入式负荷识别算法 被引量:2
12
作者 杨桂兴 王维庆 +2 位作者 姚红雨 袁铁江 郭小龙 《高电压技术》 EI CAS CSCD 北大核心 2023年第7期3031-3039,共9页
针对目前非侵入式负荷识别算法未能兼顾负荷识别的准确性、部署在嵌入式设备上可行性的问题,提出了一种基于决策树思想的1DCNN-BP负荷识别算法。首先,为实现在负荷组合投切情况下的负荷特征提取及数据特征降维,设计了能够消除背景负荷... 针对目前非侵入式负荷识别算法未能兼顾负荷识别的准确性、部署在嵌入式设备上可行性的问题,提出了一种基于决策树思想的1DCNN-BP负荷识别算法。首先,为实现在负荷组合投切情况下的负荷特征提取及数据特征降维,设计了能够消除背景负荷干扰的两阶段事件检测算法,提出了基于曲线描述的U–I空间序列特征提取方法。其次,为了具备泛化能力、高识别率以及部署在嵌入式设备上的可行性与经济性,提出以序列特征、负荷功率、谐波特征为输入的基于决策树思想的1DCNN-BP负荷识别方法。最后,基于Plaid、Blued-A公开数据集进行算例分析,在所需RAM、ROM仅有几十KB的条件下,识别准确率分别达到92.3%及100%,为后续用户侧能量管理奠定了基础。 展开更多
关键词 非侵入式 负荷识别 嵌入式 事件检测 卷积神经网络 决策树
在线阅读 下载PDF
基于CNN和Bi-LSTM的无监督日志异常检测模型 被引量:8
13
作者 尹春勇 张杨春 《计算机应用》 CSCD 北大核心 2023年第11期3510-3516,共7页
日志能记录系统运行时的具体状态,而自动化的日志异常检测对网络安全至关重要。针对日志语句随时间演变导致异常检测准确率低的问题,提出一种无监督日志异常检测模型LogCL。首先,通过日志解析技术将半结构化的日志数据转换为结构化的日... 日志能记录系统运行时的具体状态,而自动化的日志异常检测对网络安全至关重要。针对日志语句随时间演变导致异常检测准确率低的问题,提出一种无监督日志异常检测模型LogCL。首先,通过日志解析技术将半结构化的日志数据转换为结构化的日志模板;其次,使用会话和固定窗口将日志事件划分为日志序列;再次,提取日志序列的数量特征,使用自然语言处理技术对日志模板进行语义特征提取,并利用词频-词语逆频率(TF-IWF)算法生成加权的句嵌入向量;最后,将特征向量输入一个并列的基于卷积神经网络(CNN)和双向长短期记忆(Bi-LSTM)网络的模型中进行检测。在两个公开的真实数据集上的实验结果表明,所提模型较基准模型LogAnomaly在异常检测的F1-score上分别提高了3.6和2.3个百分点。因此LogCL能够对日志数据进行有效的异常检测。 展开更多
关键词 异常检测 深度学习 日志分析 词嵌入 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于全局和局部信息融合的显著性检测 被引量:2
14
作者 刘尚旺 赵欣莹 杨磊 《河南师范大学学报(自然科学版)》 CAS 北大核心 2020年第3期26-33,共8页
为提高低对比度、复杂自然图像显著性检测的准确率和泛化性能,提出一种贝叶斯框架下的全局和局部信息融合的显著性检测模型.首先,构建深度卷积自编码网络,采用对称编解码结构,监督学习图像全局特征,得到全局显著图;然后,根据全局显著图... 为提高低对比度、复杂自然图像显著性检测的准确率和泛化性能,提出一种贝叶斯框架下的全局和局部信息融合的显著性检测模型.首先,构建深度卷积自编码网络,采用对称编解码结构,监督学习图像全局特征,得到全局显著图;然后,根据全局显著图产生前景和背景码本,利用局部约束线性编码算法进行编码,采用稀疏编码描述局部特征,产生局部显著图;最后,提出采用贝叶斯框架,将全局和局部信息融合,生成最终显著图.实验结果表明,所提模型在ECSSD,DUT-OMRON和PASCAL数据集上F-measure值分别为76.53%、59.45%和72.52%,MAE值分别为0.14328、0.13787和0.18105,且能够有效对低对比度、复杂真实自然图像进行显著性检测. 展开更多
关键词 显著性检测 贝叶斯框架 稀疏编码 深度卷积自编码网络
在线阅读 下载PDF
一种应用于嵌入式设备的指印活性检测方法
15
作者 李仁旺 杨柳 +1 位作者 陈高曙 施展 《浙江工业大学学报》 CAS 北大核心 2023年第1期32-37,共6页
现有的指印活性检测方法因存在模型复杂、训练参数量大等问题,在嵌入式设备这种运算能力受限的场景中应用较为困难。为解决这一问题,提出一种应用于嵌入式设备的指印活性检测方法。该方法构建了一个轻量级的神经网络模型,在传统卷积神... 现有的指印活性检测方法因存在模型复杂、训练参数量大等问题,在嵌入式设备这种运算能力受限的场景中应用较为困难。为解决这一问题,提出一种应用于嵌入式设备的指印活性检测方法。该方法构建了一个轻量级的神经网络模型,在传统卷积神经网络模型的基础上,取消了全连接层,采用分通道的残差模块替代原有的卷积层,精简了网络结构,大幅度降低了模型参数量,缩短了模型运行时间。建立指印数据集,并用其进行实验分析,实验结果表明:笔者构建的轻量级神经网络模型在测试集上准确率为96.22%,相较于传统神经网络模型在指印活性检测方面准确率更高,参数量更少,对设备运算性能要求更低。 展开更多
关键词 指纹活性检测 卷积神经网络 嵌入式设备
在线阅读 下载PDF
基于卷积神经网络快速区域标定的表面缺陷检测 被引量:25
16
作者 李宜汀 谢庆生 +2 位作者 黄海松 姚立国 魏琴 《计算机集成制造系统》 EI CSCD 北大核心 2019年第8期1897-1907,共11页
为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精... 为检测生产线中产品的表面缺陷,提出一种基于卷积神经网络快速区域标定(FasterR-CNN)的缺陷检测方法,用于识别缺陷类型并标记出缺陷位置。预处理阶段提出区域规划方法粗略裁剪出缺陷主体,以避免产生大量冗余窗口,从而提升检测速度和精度。所提算法结合数据扩充方法增加了图像数量,通过划分K折交叉验证数据集改善了算法的鲁棒性;同时,将稀疏滤波思想融入卷积神经网络,提取双重深度特征作为FasterR-CNN的输入,提升了FasterR-CNN位置检测和识别的精度。通过油辣椒灌装生产线的封盖面典型缺陷检测验证了所提方法的可行性。 展开更多
关键词 表面缺陷检测 卷积神经网络快速区域标定 位置检测 稀疏滤波 生产过程监控
在线阅读 下载PDF
基于稀疏局部嵌入深度卷积网络的冷水机组故障诊断方法 被引量:11
17
作者 刘旭婷 李益国 +2 位作者 孙栓柱 刘西陲 沈炯 《化工学报》 EI CAS CSCD 北大核心 2018年第12期5155-5163,共9页
针对于冷水机组提出一种基于稀疏局部嵌入深度卷积网络(sparsely local embedding network,SLENet)的故障诊断方法。采用稀疏局部嵌入方法代替卷积核,对输入数据进行特征选择,避免了复杂的训练和调参过程。另外采用空间金字塔最大池化... 针对于冷水机组提出一种基于稀疏局部嵌入深度卷积网络(sparsely local embedding network,SLENet)的故障诊断方法。采用稀疏局部嵌入方法代替卷积核,对输入数据进行特征选择,避免了复杂的训练和调参过程。另外采用空间金字塔最大池化作为网络的输出层,减少了网络的输出维数和分类器的计算量。针对美国采暖、制冷与空调工程师学会提供的冷水机组的典型故障数据进行分类,结果表明,该方法相比深度卷积网络(CNN)和支持向量机(SVM)方法具有更高的故障诊断精度。 展开更多
关键词 算法 神经网络 安全 故障诊断 稀疏局部嵌入 深度卷积网络 空间金字塔最大池化
在线阅读 下载PDF
基于全卷积神经网络与低秩稀疏分解的显著性检测 被引量:11
18
作者 张芳 王萌 +4 位作者 肖志涛 吴骏 耿磊 童军 王雯 《自动化学报》 EI CSCD 北大核心 2019年第11期2148-2158,共11页
为了准确检测复杂背景下的显著区域,提出一种全卷积神经网络与低秩稀疏分解相结合的显著性检测方法,将图像分解为代表背景的低秩矩阵和对应显著区域的稀疏噪声,结合利用全卷积神经网络学习得到的高层语义先验知识,检测图像中的显著区域... 为了准确检测复杂背景下的显著区域,提出一种全卷积神经网络与低秩稀疏分解相结合的显著性检测方法,将图像分解为代表背景的低秩矩阵和对应显著区域的稀疏噪声,结合利用全卷积神经网络学习得到的高层语义先验知识,检测图像中的显著区域.首先,对原图像进行超像素聚类,并提取每个超像素的颜色、纹理和边缘特征,据此构成特征矩阵;然后,在MSRA数据库中,基于梯度下降法学习得到特征变换矩阵,利用全卷积神经网络学习得到高层语义先验知识;接着,利用特征变换矩阵和高层语义先验知识矩阵对特征矩阵进行变换;最后,利用鲁棒主成分分析算法对变换后的矩阵进行低秩稀疏分解,并根据分解得到的稀疏噪声计算显著图.在公开数据集上进行实验验证,并与当前流行的方法进行对比,实验结果表明,本文方法能够准确地检测感兴趣区域,是一种有效的自然图像目标检测与分割的预处理方法. 展开更多
关键词 显著性检测 全卷积神经网络 低秩稀疏分解 高层语义先验知识
在线阅读 下载PDF
基于轻量化模型的钢轨扣件缺陷检测系统 被引量:3
19
作者 张元 孟建军 +3 位作者 吕德芳 祁文哲 胥如迅 陈晓强 《仪表技术与传感器》 CSCD 北大核心 2023年第11期96-101,106,共7页
铁路巡检工作中,嵌入式设备受算力和存储空间的限制,存在使用YOLO V5模型检测钢轨扣件缺陷速度慢、精度较低的问题。通过替换YOLO V5主干卷积网络为MobileNet V3,将网络中的激活函数修改为Mish并融合协同注意力机制,实现模型的轻量化改... 铁路巡检工作中,嵌入式设备受算力和存储空间的限制,存在使用YOLO V5模型检测钢轨扣件缺陷速度慢、精度较低的问题。通过替换YOLO V5主干卷积网络为MobileNet V3,将网络中的激活函数修改为Mish并融合协同注意力机制,实现模型的轻量化改进。将改进后的模型部署到嵌入式设备Jetson TX2上,使用板载CSI摄像头扫描、拍摄钢轨扣件,并搭载显示屏等设备构成钢轨扣件缺陷检测系统。运行系统,单张扣件图片的检测速度达56.8 ms,准确度在90%以上,并且模型大小仅有9.8 MB,符合占用存储少、检测效果佳的轻量化要求。 展开更多
关键词 嵌入式设备 扣件缺陷检测 轻量化 YOLO V5 卷积网络 目标检测
在线阅读 下载PDF
一种基于级联神经网络的飞机检测方法 被引量:6
20
作者 王晓林 苏松志 +2 位作者 刘晓颖 蔡国榕 李绍滋 《智能系统学报》 CSCD 北大核心 2020年第4期697-704,共8页
由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模... 由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。 展开更多
关键词 飞机检测 遥感图像 级联 深度学习 卷积神经网络 两阶段 由粗到细 嵌入式设备
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部