期刊文献+
共找到527篇文章
< 1 2 27 >
每页显示 20 50 100
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
1
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
基于sparse group Lasso方法的脑功能超网络构建与特征融合分析 被引量:7
2
作者 李瑶 赵云芃 +3 位作者 李欣芸 刘志芬 陈俊杰 郭浩 《计算机应用》 CSCD 北大核心 2020年第1期62-70,共9页
功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题... 功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题,引入sparse group Lasso(sgLasso)方法进一步改善超网络的创建。首先,利用sgLasso方法进行超网络创建;然后,引入两组超网络特有的属性指标进行特征提取以及特征选择,这些指标分别是基于单一节点的聚类系数和基于一对节点的聚类系数;最后,将特征选择后得到的两组有显著差异的特征通过多核学习进行特征融合和分类。实验结果表明,所提方法经过多特征融合取得了87.88%的分类准确率。该结果表明为了改善脑功能超网络的创建,需要考虑到组信息,但不能逼迫使用整组信息,可以适当地对组结构进行扩展。 展开更多
关键词 超网络 sparse GROUP Lasso 基于一对节点的聚类系数 多核学习 抑郁症 机器学习
在线阅读 下载PDF
压缩行存储格式与解耦方法结合的掺氢天然气管网瞬态仿真算法 被引量:1
3
作者 李玉星 陈若飞 +7 位作者 朱建鲁 仇柏林 吕浩 陈凤 张双蕾 杨浩 陈俊文 何佳薪 《天然气工业》 北大核心 2025年第5期188-200,共13页
随着纯氢与掺氢天然气管网的快速发展,传统的数值求解算法面临数值稳定性及求解效率的挑战,迫切需要研究高效、稳定的数值求解新方法,以优化掺氢天然气管网设计,提高管网运营效率。为此,在研究了掺氢对天然气管网瞬态仿真过程中矩阵条... 随着纯氢与掺氢天然气管网的快速发展,传统的数值求解算法面临数值稳定性及求解效率的挑战,迫切需要研究高效、稳定的数值求解新方法,以优化掺氢天然气管网设计,提高管网运营效率。为此,在研究了掺氢对天然气管网瞬态仿真过程中矩阵条件数的影响基础上,提出了将压缩行存储格式(CSR)与水热力解耦策略相结合的数值求解算法,并评估了其在瞬态输氢管网仿真中的适应性。研究结果表明:①天然气管网掺氢会导致瞬态仿真中矩阵的条件数增加数十至数百倍,影响解的稳定性;②相较于传统的二维矩阵算法,基于CSR的数值求解算法能至少提升10倍计算效率,且随着矩阵规模的增大,提升效果呈指数级增长;③在管网仿真中推荐优先使用稀疏LU分解法,当结果不稳定时,再考虑使用稀疏QR分解作为备用方案;④解耦策略下,求解矩阵的条件数显著降低,算法的稳定性提高,仿真求解性能至少为耦合的10倍,在基于CSR的算法中,也有50%以上的性能提升。结论认为,该研究成果可以为提高纯氢与掺氢天然气管网瞬态仿真效率提供有益的参考,具有重要的理论意义和实际应用价值。 展开更多
关键词 掺氢天然气 瞬态 管网仿真 数值求解 稀疏矩阵 CSR 解耦 仿真效率
在线阅读 下载PDF
基于SE-AdvGAN的图像对抗样本生成方法研究 被引量:1
4
作者 赵宏 宋馥荣 李文改 《计算机工程》 北大核心 2025年第2期300-311,共12页
对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。... 对抗样本是评估深度神经网络(DNN)鲁棒性和揭示其潜在安全隐患的重要手段。基于生成对抗网络(GAN)的对抗样本生成方法(AdvGAN)在生成图像对抗样本方面取得显著进展,但该方法生成的扰动稀疏性不足且幅度较大,导致对抗样本的真实性较低。为解决这一问题,基于AdvGAN提出一种改进的图像对抗样本生成方法(SE-AdvGAN)。SE-AdvGAN通过构造SE注意力生成器和SE残差判别器来提高扰动的稀疏性。SE注意力生成器用于提取图像关键特征,限制扰动生成位置,SE残差判别器指导生成器避免生成无关扰动。同时,在SE注意力生成器的损失函数中加入以l_(2)范数为基准的边界损失以限制扰动的幅度,从而提高对抗样本的真实性。实验结果表明,在白盒攻击场景下,SE-AdvGAN相较于现有方法生成的对抗样本扰动稀疏性更高、幅度更小,并且在不同目标模型上均取得了更好的攻击效果,说明SE-AdvGAN生成的高质量对抗样本可以更有效地评估DNN模型的鲁棒性。 展开更多
关键词 对抗样本 生成对抗网络 稀疏扰动 深度神经网络 鲁棒性
在线阅读 下载PDF
基于注意力时间卷积神经网络的光伏功率概率预测 被引量:1
5
作者 李青 《太阳能学报》 北大核心 2025年第2期326-332,共7页
针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制... 针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制,构建注意力时间卷积神经网络(ATCNN),通过分层卷积结构提取时间依赖关系,利用稀疏注意力关注重要的时间步,构建的稀疏注意力层无需更深的架构即可扩展感受野,并使预测结果更具可解释性。在两个光伏数据集上的功率概率预测结果表明,ATCNN的预测准确性优于TCNN、时间融合解码器(TFT)等先进深度学习模型,同时对于感受野的扩展,ATCNN比TCNN需要的卷积层更少、训练速度更快,并能可视化预测过程中最重要的时间步。同卷积层情况下,ATCNN比TCNN的点预测损失小15.7%,概率预测损失小15.9%。 展开更多
关键词 光伏功率 预测 时间卷积网络 稀疏注意力机制 可解释性
在线阅读 下载PDF
基于复合域多尺度分解的红外偏振图像融合方法 被引量:1
6
作者 陈广秋 魏洲 +1 位作者 段锦 黄丹丹 《吉林大学学报(理学版)》 北大核心 2025年第2期479-491,共13页
针对目前红外偏振融合图像质量差、偏振信息缺失、目标纹理细节不够等问题,提出一种基于复合域多尺度分解的红外偏振图像融合方法.首先,在空间域内利用引导滤波器对源图像进行二尺度分解,得到细节层和基础层,在频域内利用非下采样剪切... 针对目前红外偏振融合图像质量差、偏振信息缺失、目标纹理细节不够等问题,提出一种基于复合域多尺度分解的红外偏振图像融合方法.首先,在空间域内利用引导滤波器对源图像进行二尺度分解,得到细节层和基础层,在频域内利用非下采样剪切波变换对基础层图像进行多尺度多方向分解,得到低频子带图像和高频子带图像;其次,对高频子带采用主成分分析-自适应脉冲耦合神经网络融合规则,对低频子带采用改进的卷积稀疏表示进行系数合并,细节层融合采用基于像素相似度的局部能量加权和选择性融合规则;最后,在复合域内利用逆变换重构出融合图像.实验结果表明,该方法在主观视觉性能和8个客观评价指标上均优于其他对比融合方法,说明该方法在红外偏振图像融合中具有较多优势,能有效提高融合图像的质量. 展开更多
关键词 红外偏振图像融合 非下采样剪切波变换 自适应脉冲耦合神经网络 卷积稀疏表示
在线阅读 下载PDF
基于即插即用框架和二维AMP的稀疏SAR学习成像方法
7
作者 李开明 张宏伟 +2 位作者 王天润 张强 匡旭斌 《北京理工大学学报》 北大核心 2025年第2期195-204,共10页
合成孔径雷达(synthetic aperture radar,SAR)稀疏成像问题主要通过压缩感知(compressed sensing,CS)理论来解决,通过构建正则化优化模型将先验信息引入图像恢复任务.然而,简单的正则化约束难以提供目标复杂的结构信息,尤其是非稀疏场景... 合成孔径雷达(synthetic aperture radar,SAR)稀疏成像问题主要通过压缩感知(compressed sensing,CS)理论来解决,通过构建正则化优化模型将先验信息引入图像恢复任务.然而,简单的正则化约束难以提供目标复杂的结构信息,尤其是非稀疏场景.提出了一种新颖的基于即插即用(plug-and-play,PnP)框架和深度展开网络(deep unfolding networks,DUN)的二维稀疏SAR学习成像方法.基于线性调频变标算法(chirp-scaling algorithm,CSA)推导出近似观测模型来降低计算成本;使用基于匹配滤波的二维近似消息传递(matched filter-based approximate message-passing,MFAMP)方法迭代求解该稀疏成像问题.为了克服现有稀疏成像方法中先验模型的局限性,在稀疏重建框架中引入PnP先验模型来代替传统的L1范数稀疏正则化器.将成像过程展开为一个DUN,称为基于PnP框架和MFAMP的SAR学习成像网络(PnP-MFAMP-Net).实验结果验证了所提成像方法的鲁棒性和优越性. 展开更多
关键词 合成孔径雷达 压缩感知 深度展开网络 稀疏成像 学习成像
在线阅读 下载PDF
滚动轴承的退化特征信息融合与剩余寿命预测 被引量:1
8
作者 张建宇 王留震 +1 位作者 肖勇 马雅楠 《中国机械工程》 北大核心 2025年第7期1553-1561,共9页
针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融... 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。 展开更多
关键词 稀疏自编码器特征融合 双向长短期记忆网络预测模型 滚动轴承 反双曲特征指标 频域谐波退化因子
在线阅读 下载PDF
基于变换域多尺度加权神经网络的全色锐化
9
作者 马飞 孙陆鹏 +1 位作者 杨飞霞 徐光宪 《自然资源遥感》 北大核心 2025年第3期76-84,共9页
为了解决全色锐化过程中存在的空间与光谱信息融合问题,该文提出了一种在非下采样剪切波变换(non-subsampled shearlet transform,NSST)域下,基于多尺度加权的脉冲耦合神经网络(pulse-coupled neural network,PCNN)和低秩稀疏分解的全... 为了解决全色锐化过程中存在的空间与光谱信息融合问题,该文提出了一种在非下采样剪切波变换(non-subsampled shearlet transform,NSST)域下,基于多尺度加权的脉冲耦合神经网络(pulse-coupled neural network,PCNN)和低秩稀疏分解的全色图像和多光谱图像的锐化模型。该模型分为低频和高频处理模块,对于高频子带,提出了一种适用于不同尺度不同方向高频子带的加权方式,并针对其不同方向上的特性,采用一种自适应PCNN模型;对于低频子带,首先将其分解为低秩与稀疏2部分,并根据低秩部分与稀疏部分特点设计相应的融合规则,再采取逆NSST变换得到融合图像。实验在GeoEye,QuickBird与Pléiades数据集上进行,并针对高频信息多尺度加权模块设计了消融实验,相比于次优模型,峰值信噪比(peak signal-to-noise ratio,PSNR)值分别提高了约1 dB,1.6 dB和2.2 dB。实验结果表明,该模型在指标评估中优于其他算法,并有效解决高频信息提取困难问题。 展开更多
关键词 全色锐化 非下采样剪切波变换 多尺度加权 脉冲耦合神经网络 低秩稀疏分解
在线阅读 下载PDF
基于稀疏反演理论的船舶行为不确定分析方法
10
作者 胡甚平 陈炎 +1 位作者 朱清华 韩冰 《哈尔滨工程大学学报》 北大核心 2025年第9期1709-1718,共10页
针对船舶会遇过程中的避让行为差异性问题,本文提出一种基于稀疏反演理论的船舶行为不确定性分析方法。通过碰撞事故调查报告中船舶自动识别系统数据的情景反演,提出船舶会遇过程中包括避让动机、时机、方式、幅度和效果等行为表征;针... 针对船舶会遇过程中的避让行为差异性问题,本文提出一种基于稀疏反演理论的船舶行为不确定性分析方法。通过碰撞事故调查报告中船舶自动识别系统数据的情景反演,提出船舶会遇过程中包括避让动机、时机、方式、幅度和效果等行为表征;针对不同会遇局面的行为程度特点,构建神经网络辨识船舶避让行为,利用信息熵测量不同会遇阶段下行为的不确定性程度;结合多起碰撞事故调查报告的样本数据,揭示碰撞事故集下船舶避让行为的不确定性特征。结果表明:船舶具有不同局面不同避让责任的差异化避让行为特征,且随两船相互驶近下避让行为的方式、幅度和效果等不确定性逐渐增大。基于稀疏反演理论的数据分析方法可量化船舶避让行为的时空分异特性,为船舶会遇避让的决策方案提供智能化分析的思路。 展开更多
关键词 水上交通 碰撞事故 船舶避让行为 不确定性 稀疏反演理论 数据驱动 神经网络 信息熵
在线阅读 下载PDF
基于地理时空关联和社会影响的兴趣点推荐 被引量:1
11
作者 金红 陈礼珂 +3 位作者 游兰 吕顺营 周开成 肖奎 《计算机科学》 北大核心 2025年第5期128-138,共11页
随着基于位置的社交网络的流行,个性化兴趣点推荐已经成为一项重要任务。然而现有研究在对上下文信息建模及融合时对其内在联系考虑不充分,其中地理与时间两种上下文之间往往是相互影响的;此外,在建模用户社会关系时主要通过度量不同用... 随着基于位置的社交网络的流行,个性化兴趣点推荐已经成为一项重要任务。然而现有研究在对上下文信息建模及融合时对其内在联系考虑不充分,其中地理与时间两种上下文之间往往是相互影响的;此外,在建模用户社会关系时主要通过度量不同用户签到的POI子集之间的直接相似性来表达用户社交行为的相似性程度,未能更好地缓解数据稀疏对不同用户签到POI子集相似性度量的影响。因此,合理地重构了上下文信息模型并有效地融合建模到用户偏好中,提出了一种基于地理时空关联和社会影响的兴趣点推荐方法。该方法根据不同时间状态下用户的主要地理活动中心呈现空间聚集现象,使用带有时间约束的方法评估POI间的地理相关性,以建模POI地理信息对用户签到的影响。进一步地,在对用户社会关系建模时假设具有更多共同签到的POI或签到POI的类别有着更大重合度的用户社交行为的相似性更高,结合POI类别信息来提高社会关系建模的有效性和作用。最后,将提出的地理时空关联模型和用户社会关系模型融合到加权矩阵分解中,进行用户的个性化POI推荐。对比实验结果表明,所提方法具有更好的POI推荐性能,说明了提出的模型在上下文建模和克服数据稀疏性方面更具优势。 展开更多
关键词 基于位置的社交网络 兴趣点推荐 数据稀疏 地理时空关联 社会影响
在线阅读 下载PDF
基于SBSS与CNN的750 kV变压器和尖板的放电信号声纹识别 被引量:1
12
作者 包艳艳 杨广泽 +1 位作者 陈伟 冯婷娜 《西南交通大学学报》 北大核心 2025年第3期781-792,共12页
变压器绝缘水平和健康状态对电网的安全稳定至关重要,为研究750 kV变压器内部存在放电故障时,箱体外采集的可听声信号中可能混杂有电晕声、鸟鸣等其他干扰信号的工程实际问题,提出一种基于稀疏表示理论(SBSS)与卷积神经网络(CNN)的750 k... 变压器绝缘水平和健康状态对电网的安全稳定至关重要,为研究750 kV变压器内部存在放电故障时,箱体外采集的可听声信号中可能混杂有电晕声、鸟鸣等其他干扰信号的工程实际问题,提出一种基于稀疏表示理论(SBSS)与卷积神经网络(CNN)的750 kV变压器与尖板放电混叠信号的声纹识别方法.首先,采集武胜750 kV变电站变压器正常运行声信号作为背景声,构建针-板放电模型得到放电声信号和现场常见干扰声作为前景声,通过添加不同信噪比的前景声到背景声中构造混叠声信号;然后,利用基于稀疏表示理论的盲分离算法实现目标前景声纹图谱和冗余背景声纹图谱的分离;最后,对CNN模型超参数进行优化,以提高模型对分离后的各类前景声纹谱图的分类性能.研究结果表明:通过盲源分离算法可以剔除冗余背景声干扰,使神经网络聚焦于前景声的分类识别;本文方法可实现混叠声信号中前景声纹的分离,分离后,CNN、支持向量机(SVM)和反向传播神经网络(BPNN)的识别准确率分别提高7.6%、17.2%和14.3%. 展开更多
关键词 局部放电 时频谱图 稀疏表示 盲分离 卷积神经网络 深度学习
在线阅读 下载PDF
融合RNN与稀疏自注意力的文本摘要方法 被引量:2
13
作者 刘钟 唐宏 +1 位作者 王宁喆 朱传润 《计算机工程》 北大核心 2025年第1期312-320,共9页
随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影... 随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影响用户体验。为了解决上述问题,提出一种基于Transformer改进的融合递归神经网络(RNN)与稀疏自注意力的文本摘要方法。首先采用窗口RNN模块,将输入文本按窗口划分,每个RNN对窗口内词序信息进行压缩,并通过窗口级别的表示整合为整个文本的表示,进而增强模型捕获局部依赖的能力;其次采用基于递归循环机制的缓存模块,循环缓存上一文本片段的信息到当前片段,允许模型更好地捕获长期依赖和全局信息;最后采用稀疏自注意力模块,通过块稀疏矩阵对注意力矩阵按块划分,关注并筛选出重要令牌对,而不是在所有令牌对上平均分配注意力,从而降低注意力的时间复杂度,提高长文本摘要任务的效率。实验结果表明,该方法在数据集text8、enwik8上的BPC分数相比于LoBART模型降低了0.02,在数据集wikitext-103以及ptb上的PPL分数相比于LoBART模型分别降低了1.0以上,验证了该方法的可行性与有效性。 展开更多
关键词 序列到序列架构 文本摘要 Transformer模型 递归神经网络 递归循环机制 稀疏自注意力机制
在线阅读 下载PDF
未来复杂网络环境下动态频谱高效感知技术研究进展 被引量:1
14
作者 崔翠梅 殷昌永 杨德智 《电讯技术》 北大核心 2025年第4期634-641,共8页
动态频谱共享被认为是解决未来5G/6G复杂网络环境“频谱赤字危机”这一问题直接有效的手段之一。然而,由于5G/6G网络超密集、高异构、高动态、智能化的新特征,频谱共享发现(频谱感知)面临着海量数据获取成本高、价值密度低、检测结果不... 动态频谱共享被认为是解决未来5G/6G复杂网络环境“频谱赤字危机”这一问题直接有效的手段之一。然而,由于5G/6G网络超密集、高异构、高动态、智能化的新特征,频谱共享发现(频谱感知)面临着海量数据获取成本高、价值密度低、检测结果不准确、机会发现不充分等问题与挑战,基于机器学习的动态频谱高效感知成为电磁频谱领域重要的研究方向。首先分析了电磁频谱动态共享的国家战略需求和技术挑战,然后从动态频谱信息的联合稀疏采样、协同感知、多维协同预测三方面介绍了国内外研究现状和发展动态,提出了动态频谱高效感知的核心科学问题;最后给出了问题解决思路,为实现未来复杂无线网络频谱高效利用提供理论和使能技术支撑。 展开更多
关键词 复杂网络 动态频谱共享 高效感知 多维协同预测 联合稀疏采样 机器学习
在线阅读 下载PDF
基于稀疏神经网络的污水处理软测量建模方法
15
作者 骆雪汇 孙悦 +1 位作者 曾泰山 刘乙奇 《华南师范大学学报(自然科学版)》 北大核心 2025年第2期104-112,共9页
软测量技术通过建立数学模型来间接测量难以直接获取的关键参数,可应用于污水处理过程中关键出水指标难以测量的问题。然而,传统神经网络软测量模型在应对污水处理软测量场景中日益复杂多样的数据时,由于模型结构过度稠密化,容易引发过... 软测量技术通过建立数学模型来间接测量难以直接获取的关键参数,可应用于污水处理过程中关键出水指标难以测量的问题。然而,传统神经网络软测量模型在应对污水处理软测量场景中日益复杂多样的数据时,由于模型结构过度稠密化,容易引发过拟合现象,导致模型的预测精度降低,泛化能力削弱。为此,文章提出了一种基于稀疏神经网络的软测量模型(SPNN)。该模型融合正则化稀疏性约束与周期性剪枝策略,降低网络中非零参数数量,以构建更为简洁且高效的模型结构;结合特征选择与数据标准化等预处理手段,进一步增强模型的预测性能和泛化能力。实验结果显示,在加州大学欧文分校的污水处理数据集(UCI污水数据集)上,相较于偏最小二乘(PLS)、支持向量机(SVM)、长短期记忆网络(LSTM)和深度神经网络(DNN),SPNN模型的预测误差显著降低。具体而言,与最优对比模型LSTM相比,SPNN模型的均方根误差(RMSE)下降了88.87%,平均绝对误差(MAE)降低了75.82%,决定系数(R 2)提高了6.29%,验证了其在复杂污水数据建模中的准确性与鲁棒性优势。 展开更多
关键词 稀疏神经网络 正则化 剪枝 污水处理
在线阅读 下载PDF
基于稀疏子空间采样的信号检测网络黑盒查询对抗攻击方法
16
作者 李东阳 王林元 +2 位作者 彭进先 马德魁 闫镔 《电子与信息学报》 北大核心 2025年第8期2808-2818,共11页
随着深度神经网络在信号检测任务的应用,神经网络易受到对抗样本攻击的脆弱性也受到了广泛关注。针对无法获取模型内部信息的信号检测网络黑盒攻击场景,该文提出一种基于稀疏子空间采样的黑盒查询对抗攻击方法。该方法将信号样本检测数... 随着深度神经网络在信号检测任务的应用,神经网络易受到对抗样本攻击的脆弱性也受到了广泛关注。针对无法获取模型内部信息的信号检测网络黑盒攻击场景,该文提出一种基于稀疏子空间采样的黑盒查询对抗攻击方法。该方法将信号样本检测数量消失比例作为判断攻击是否成功的约束条件,构造信号检测网络对抗样本攻击模型,参考跳步跳跃攻击(HSJA)算法设计基于决策边界的信号检测网络黑盒查询对抗攻击方法求解该模型,以生成信号对抗样本。为了进一步改善查询效率,该文根据信号对抗扰动特点构建稀疏子空间采样进行查询攻击,即在生成对抗样本时,按照一定比例选择具有较大幅度的信号分量,并仅在这些选定的分量上添加扰动。实验结果表明,在信号目标消失数量比例0.3的决策边界下,稀疏子空间采样黑盒对抗攻击方法使得信号检测网络mAP值降低了43.6%、召回率降低了41.2%。与全空间采样方法相比,稀疏子空间采样方法攻击成功率提升了2.5%,且对抗扰动平均能量比降低了3.47%。稀疏子空间采样攻击方法可以使得信号检测网络性能明显下降,相较于全空间采样具有攻击成功率更高、扰动强度更小等优势。 展开更多
关键词 信号检测网络 信号对抗样本 黑盒查询攻击 稀疏子空间采样
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
17
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于关联交互和双边注意力的稀疏目标检测器
18
作者 周泽政 陈东方 王晓峰 《计算机工程与设计》 北大核心 2025年第1期206-213,共8页
稀疏目标检测器Sparse R-CNN算法缺少对目标间关系的建模,导致网络对全局特征信息的利用较差,使检测效果不佳。为解决上述问题,提出关联交互模块,通过融合可学习的参数和与图像数据相关的目标间关联特征数据,增强目标之间的关联性;提出... 稀疏目标检测器Sparse R-CNN算法缺少对目标间关系的建模,导致网络对全局特征信息的利用较差,使检测效果不佳。为解决上述问题,提出关联交互模块,通过融合可学习的参数和与图像数据相关的目标间关联特征数据,增强目标之间的关联性;提出双边注意力机制,通过融合实例交互注意力信息和物体与物体间的关联注意力信息,增强对全局特征的交互。基于PASCAL VOC和MS COCO数据集的实验结果表明,该方法能够有效提升检测精度,整体性能优于原方法。 展开更多
关键词 目标检测 深度学习 稀疏网络 关联 实例交互 全局特征 注意力机制
在线阅读 下载PDF
综合特征分段组稀疏编码的交通标志识别方法
19
作者 朱逸峰 奚峥皓 +3 位作者 郑阳 刘翔 刘亚奇 张星 《计算机科学与探索》 北大核心 2025年第10期2712-2721,共10页
随着无人驾驶、辅助驾驶等技术的发展,交通标志识别(TSR)问题被更多的研究者所关注。目前,在普通交通环境下的TSR问题得到了较好的解决,但当环境中存在交通标志模糊、部分遮挡等噪声干扰时,其TSR的处理效果并不理想。针对该问题进行研究... 随着无人驾驶、辅助驾驶等技术的发展,交通标志识别(TSR)问题被更多的研究者所关注。目前,在普通交通环境下的TSR问题得到了较好的解决,但当环境中存在交通标志模糊、部分遮挡等噪声干扰时,其TSR的处理效果并不理想。针对该问题进行研究,提出了一种新颖的结合孪生网络的综合特征分段组稀疏编码的TSR问题解决方法。提取交通标志的多个不同尺度特征编码,并提出利用综合特征编码的方法来表征交通标志;通过提出的分段组稀疏编码方法对交通标志的综合特征编码进行优化,以改善模型对编码的学习能力,提高编码的鲁棒性;构建了用于分段组稀疏编码训练的孪生神经网络模型,该模型因其简单的结构和较少的层数使其不易出现过拟合问题,同时所提模型也具有较少的参数量,较大幅度提升了模型的运算速度。实验表明,所提方法在TT100K数据集原始环境、运动模糊环境中,与目前SOTA模型最好成绩相比其准确率、精确率、召回率与F1分数等评价指标相近,模型参数量减少70.8%,FPS提升51.4%;在部分遮挡噪声环境中,各指标均显著优于目前SOTA模型最好成绩,尤其在遮挡率为60%时,所提方法的准确率和FPS分别较目前SOTA模型最好成绩提升了0.118和27 FPS。 展开更多
关键词 计算机视觉 交通标志识别 分段组稀疏编码 孪生神经网络
在线阅读 下载PDF
一种稀疏体压特征人员识别方法
20
作者 肖鸿洲 李长云 +2 位作者 王志兵 甘英华 任国鑫 《现代电子技术》 北大核心 2025年第3期111-118,共8页
在注重隐私或无光环境下,主流的基于机器视觉的人员识别方法不太适用。基于稀疏体压特征,文中提出一种将CNN与Bi⁃LSTM相融合再结合注意力机制的人员识别新方法。首先,对获得的稀疏体压数据使用CNN进行空间特征提取;然后,使用Bi⁃LSTM神... 在注重隐私或无光环境下,主流的基于机器视觉的人员识别方法不太适用。基于稀疏体压特征,文中提出一种将CNN与Bi⁃LSTM相融合再结合注意力机制的人员识别新方法。首先,对获得的稀疏体压数据使用CNN进行空间特征提取;然后,使用Bi⁃LSTM神经网络获取长远的上下文信息,抽取潜藏在时序规律中的上下文特征;最后,将抽取的空间与时序特征并联融合,结合注意力机制进行权重参数优化,使模型更关注于最具类别区分度的特征。实验结果表明,该方法拥有更快的收敛速度,识别准确率达到93.86%。 展开更多
关键词 人员识别 体压特征 注意力机制 双向长短期记忆 神经网络 稀疏体压
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部