期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
基于SKPCA的卫星整流罩空调系统传感器故障检测研究 被引量:4
1
作者 汪辉 税爱社 +1 位作者 宗福兴 陈帆 《传感器与微系统》 CSCD 2015年第2期23-27,共5页
针对卫星整流罩空调系统对传感器故障检测的高可靠性的要求,在分析常见故障模式的基础上,采用了基于统计量核主元分析(SKPCA)的故障检测方法,建立整流罩空调系统传感器故障检测模型,对整流罩空调系统传感器容易出现的偏置故障进行了验... 针对卫星整流罩空调系统对传感器故障检测的高可靠性的要求,在分析常见故障模式的基础上,采用了基于统计量核主元分析(SKPCA)的故障检测方法,建立整流罩空调系统传感器故障检测模型,对整流罩空调系统传感器容易出现的偏置故障进行了验证实验。实验结果验证了SKPCA方法在整流罩空调系统传感器故障检测中的正确性和有效性。 展开更多
关键词 卫星整流罩 空调系统 传感器 统计量核主元分析 故障检测
在线阅读 下载PDF
基于SKPCA与NEAT算法的煤与瓦斯突出危险性预测 被引量:7
2
作者 徐耀松 程业伟 《安全与环境学报》 CAS CSCD 北大核心 2021年第4期1427-1433,共7页
针对煤与瓦斯突出预测精度不足的问题,为了减少突出灾害的危害,提出了基于稀疏核主成分分析法(SKPCA)与增强拓扑神经进化算法(NEAT)的煤与瓦斯突出危险性预测方法。通过核主成分分析法对突出非线性数据进行降维,然后对主成分数据进行稀... 针对煤与瓦斯突出预测精度不足的问题,为了减少突出灾害的危害,提出了基于稀疏核主成分分析法(SKPCA)与增强拓扑神经进化算法(NEAT)的煤与瓦斯突出危险性预测方法。通过核主成分分析法对突出非线性数据进行降维,然后对主成分数据进行稀疏化,减少原始数据中不重要元素对降维后主成分的影响。搭建增强拓扑神经进化网络(NEAT)预测模型,采用进化算法同时优化神经网络的权值和拓扑结构,得到最佳神经网络预测模型。将处理后的主成分数据输入模型预测突出危险指数,结果表明,该方法危险等级预测准确度达到98%,SKPCA-NEAT模型在煤与瓦斯突出预测上相比PCA和BP神经网络具有优势。 展开更多
关键词 安全工程 煤突出 瓦斯突出 稀疏核主成分分析 NEAT算法
在线阅读 下载PDF
基于EN-SKPCA降维和FPA优化LSTMNN的短期风电功率预测 被引量:15
3
作者 张淑清 杨振宁 +3 位作者 姜安琦 李君 刘海涛 穆勇 《太阳能学报》 EI CAS CSCD 北大核心 2022年第6期204-211,共8页
综合考虑风电功率序列及气象数据的多维特征,提出一种弹性网稀疏核主成分分析(EN-SKPCA)降维方法,对气象因素降维并表述为回归优化型问题,添加的弹性网惩罚解决了KPCA重构主成分难以解释构成的问题;提出花授粉算法(FPA)优化长短时记忆... 综合考虑风电功率序列及气象数据的多维特征,提出一种弹性网稀疏核主成分分析(EN-SKPCA)降维方法,对气象因素降维并表述为回归优化型问题,添加的弹性网惩罚解决了KPCA重构主成分难以解释构成的问题;提出花授粉算法(FPA)优化长短时记忆神经网络(LSTMNN)预测模型,可自动筛选出最佳超参数,降低了参数经验设置所带来的随机性。该方法解决了突变天气的影响,提高了预测精度。对2017年宁夏麻黄山第一风电场实测数据实验,证明了该方法的优越性。 展开更多
关键词 风电 功率预测 气象 降维 弹性网稀疏核主成分分析 花授粉算法优化 长短时记忆神经网络
在线阅读 下载PDF
基于Kernel PCA的人脸识别算法的探讨 被引量:2
4
作者 张晓红 汤晓华 沈晓红 《北京工商大学学报(自然科学版)》 CAS 2008年第3期37-39,共3页
扼要阐明抽取二维人脸图像特征方法并进行人脸识别,结合实验结果进行分析比较主元分析和核主元分析方法的优缺点,得出核主元分析方法在人脸识别算法中误识率低,解决了维数和小样本问题,能准确快速识别人脸的结论.
关键词 人脸识别 主元分析法 核主元分析法
在线阅读 下载PDF
基于SPSO与ISKPCA的RdR散点图识别分类研究
5
作者 岳大超 甘良志 +1 位作者 刘海宽 余南南 《计算机工程与应用》 CSCD 北大核心 2018年第23期120-124,共5页
面对稀缺的医疗资源,心血管疾病的上升趋势,自动化诊断日趋迫切。为实现心电自动化诊断,提出了一种使用简化粒子群算法来自动搜寻集成稀疏核主分量分析的参数,并以此获得的集成稀疏核主分量分析模型来对用心电数据绘制的RdR散点图进行... 面对稀缺的医疗资源,心血管疾病的上升趋势,自动化诊断日趋迫切。为实现心电自动化诊断,提出了一种使用简化粒子群算法来自动搜寻集成稀疏核主分量分析的参数,并以此获得的集成稀疏核主分量分析模型来对用心电数据绘制的RdR散点图进行识别分类的方法,以期实现心电自动化诊断。算法通过计算样本数据与使用核主分量分析映射数据之间的距离差值来研究数据之间的最大相似性,并以此来判断样本数据类别,在对正常窦性心律、非偶联早搏、二联律早搏、三联律早搏以及混合早搏这五种心律进行的分类实验结果显示,可以准确识别不同的心律,分类的正确率较高,有助于心电自动化诊断的实现。 展开更多
关键词 心电信号 稀疏核主分量分析 RdR散点图 智能诊断 简化粒子群算法
在线阅读 下载PDF
基于K-I-ELM多模型集成的分布式光伏出力短期预测方法 被引量:1
6
作者 江卓翰 周胜瑜 +2 位作者 何禹清 周任军 孙辰昊 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期146-152,共7页
为响应“双碳”目标,高比例新能源接入的新型电力系统已成为下一个发展目标。光伏作为当前电力系统能源发电主体形式之一,其出力特性数据尚存在多源、异构及高维等分布特点,导致不同特征作用机理、机制较为复杂,继而加大分布式光伏系统... 为响应“双碳”目标,高比例新能源接入的新型电力系统已成为下一个发展目标。光伏作为当前电力系统能源发电主体形式之一,其出力特性数据尚存在多源、异构及高维等分布特点,导致不同特征作用机理、机制较为复杂,继而加大分布式光伏系统出力的预测难度。为此,首先构建核主成分分析(kernel principle component analysis,KPCA)模型,通过核函数在特征空间中依据不同特征的有效信息蕴含度提取主成分;然后采用信息熵(information entropy,IE)模型,根据各主成分信息负载度量加权系数,综合求解相应作用权重;最后依据特征评估结果,针对性设置极限学习机(extreme learning machine,ELM)网络参数,降低预测不确定度。最终整合多类别数据挖掘模型,构建K-I-ELM预测方法,在复杂数据环境下实施光伏出力短期预测。基于某实际台区光伏发电数据进行案例分析,论证所提方法针对不同数据环境的适应性及较高的预测精度。 展开更多
关键词 信息熵 核主成分分析 极限学习机 短期预测 光伏出力
在线阅读 下载PDF
面向阶段任务的携行器材品种确定方法
7
作者 吴巍屹 贾云献 +5 位作者 姜相争 史宪铭 刘洁 刘彬 董恩志 朱曦 《系统工程与电子技术》 EI CSCD 北大核心 2024年第6期2054-2064,共11页
维修器材是有效实施维修保障的物质基础,携行器材品种确定是开展维修器材携行决策的关键。针对执行阶段任务武器装备维修器材品种多、影响因素复杂且关联关系不明确造成的携行器材品种确定困难的现实问题,提出了一种将改进稀疏核主成分... 维修器材是有效实施维修保障的物质基础,携行器材品种确定是开展维修器材携行决策的关键。针对执行阶段任务武器装备维修器材品种多、影响因素复杂且关联关系不明确造成的携行器材品种确定困难的现实问题,提出了一种将改进稀疏核主成分分析(sparse kernel principal component analysis,SKPCA)算法与长短时记忆(long short-term memory,LSTM)神经网络模型相结合的阶段任务携行器材品种确定方法。在分析与任务阶段时序相关的携行器材影响因素及特征指标的基础上,运用基于弹性惩罚的SKPCA降维算法,对器材特征进行降维分析并得到低维稀疏特征向量,通过缩减数据容量增强特征指标的可解释性;运用混沌序列改进花授粉算法(flower pollination algorithm,FPA)优化LSTM超参数,构建混沌FPA-LSTM预测模型,精准进行携行器材品种确定。通过对演习携行器材品种确定算例分析验证了所提方法的科学性和可行性。 展开更多
关键词 携行器材 阶段任务 稀疏核主成分分析 影响因素分析 花授粉算法 长短时记忆神经网络
在线阅读 下载PDF
基于核主成分分析的地震属性优化方法及应用 被引量:44
8
作者 印兴耀 孔国英 张广智 《石油地球物理勘探》 EI CSCD 北大核心 2008年第2期179-183,124-125+246,共8页
传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以... 传统的基于线性变换的主成分分析法(PCA)是一种有效的地震属性降维优化方法。但是,当原始数据中存在非线性属性时,用主成分分析法提取的主成分就不能反映这种非线性属性。而核主成分分析(KPCA)则是一种基于原始数据的非线性变换,它可以提取出数据之间的非线性关系。本文从方法原理概述入手,分析了一般主成分分析在处理非线性问题上存在的不足,阐述了基于核函数的主成分分析方法,并将其首次应用于地震属性的降维优化中。应用结果表明:基于核函数的主成分分析方法具有优秀的特征提取性能。 展开更多
关键词 属性降维优化 主成分分析(PCA) 核函数 核主成分分析(KPCA)
在线阅读 下载PDF
核主成分分析与随机森林相结合的变压器故障诊断方法 被引量:49
9
作者 胡青 孙才新 +1 位作者 杜林 李剑 《高电压技术》 EI CAS CSCD 北大核心 2010年第7期1725-1729,共5页
油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异... 油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。 展开更多
关键词 电力变压器 故障诊断 溶解气体分析 分类器群 随机森林 核主成分分析
在线阅读 下载PDF
基于改进的F-score与支持向量机的特征选择方法 被引量:33
10
作者 谢娟英 王春霞 +1 位作者 蒋帅 张琰 《计算机应用》 CSCD 北大核心 2010年第4期993-996,共4页
将传统F-score度量样本特征在两类之间的辨别能力进行推广,提出了改进的F-score,使其不但能够评价样本特征在两类之间的辨别能力,而且能够度量样本特征在多类之间的辨别能力大小。以改进的F-score作为特征选择准则,用支持向量机(SVM)评... 将传统F-score度量样本特征在两类之间的辨别能力进行推广,提出了改进的F-score,使其不但能够评价样本特征在两类之间的辨别能力,而且能够度量样本特征在多类之间的辨别能力大小。以改进的F-score作为特征选择准则,用支持向量机(SVM)评估所选特征子集的有效性,实现有效的特征选择。通过UCI机器学习数据库中六组数据集的实验测试,并与SVM、PCA+SVM方法进行比较,证明基于改进F-score与SVM的特征选择方法不仅提高了分类精度,并具有很好的泛化能力,且在训练时间上优于PCA+SVM方法。 展开更多
关键词 F-score 支持向量机 特征选择 主成分分析 核函数主成分分析
在线阅读 下载PDF
基于核主元分析和邻近支持向量机的汽轮机凝汽器过程监控和故障诊断 被引量:33
11
作者 张曦 阎威武 +1 位作者 刘振亚 邵惠鹤 《中国电机工程学报》 EI CSCD 北大核心 2007年第14期56-61,共6页
提出了基于核主元分析(KPCA)和邻近支持向量机(PSVM)的汽轮机凝汽器过程监控和故障诊断新方法,将数据先用核主元法进行分析和处理,即通过非线性变换将样本数据从输入空间映射到高维特征空间,然后在高维特征空间中进行特征提取,若数据的H... 提出了基于核主元分析(KPCA)和邻近支持向量机(PSVM)的汽轮机凝汽器过程监控和故障诊断新方法,将数据先用核主元法进行分析和处理,即通过非线性变换将样本数据从输入空间映射到高维特征空间,然后在高维特征空间中进行特征提取,若数据的Hotelling’sT2和Q统计量超过控制限,说明有故障发生,则计算样本的非线性主元得分向量,并将其作为输入值送入已训练好的邻近支持向量机进行故障类型识别。该方法可以有效地捕捉变量间的非线性关系,过程监控和故障诊断效果明显好于PCA-PSVM法。汽轮机历史故障特征数据集仿真试验证明了该方法的有效性。 展开更多
关键词 核主元分析 邻近支持向量机 过程监控 故障诊断
在线阅读 下载PDF
基于异类信息特征融合的异步电机故障诊断 被引量:31
12
作者 李学军 李平 +1 位作者 蒋玲莉 曹宇翔 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第1期227-233,共7页
针对异步电机单一故障信号的局限性和故障特征存在较强非线性关系的特点,提出一种基于异类信息特征融合的故障诊断方法。以采集的振动信号和电流信号为原始信源,分别提取它们的时域特征和小波包熵特征,采用核主元分析对原始特征的组合... 针对异步电机单一故障信号的局限性和故障特征存在较强非线性关系的特点,提出一种基于异类信息特征融合的故障诊断方法。以采集的振动信号和电流信号为原始信源,分别提取它们的时域特征和小波包熵特征,采用核主元分析对原始特征的组合进行降维融合,得到信息互补的特征量,将融合特征通过支持向量机进行模式识别。异步电机转子和轴承故障诊断实例表明,基于核主元分析的异类信息特征融合方法,可充分利用异类信源的冗余互补信息和特征数据之间的非线性关系,更全面地表征设备运行状态,相比单参数法及同类信息特征融合法具有更高的诊断精度。 展开更多
关键词 异类信息 特征融合 异步电机 故障诊断 核主元分析
在线阅读 下载PDF
基于组合核函数KPCA的人脸识别研究 被引量:11
13
作者 赵剑华 王顺芳 张飞龙 《计算机工程与设计》 CSCD 北大核心 2014年第2期631-635,共5页
为克服基于单核函数KPCA的人脸识别方法的局限性,将几个单核函数合理组合以充分利用它们的互补特性,所形成的组合核函数性能将优于组合中的各单核函数。将高斯核函数分别与线性核函数、多项式核函数组合形成新的核函数应用于基于KPCA的... 为克服基于单核函数KPCA的人脸识别方法的局限性,将几个单核函数合理组合以充分利用它们的互补特性,所形成的组合核函数性能将优于组合中的各单核函数。将高斯核函数分别与线性核函数、多项式核函数组合形成新的核函数应用于基于KPCA的人脸识别方法。分别基于ORL和YALE人脸库数据选择了合理的组合核函数参数讨论了组合核函数的整体性能。实验结果表明,该组合核函数KPCA方法对人脸识别率和识别时间较PCA和单核KPCA有很大的优越性。 展开更多
关键词 核主成分分析 组合核函数 高斯核 多项式核 人脸识别
在线阅读 下载PDF
基于横切面微观构造图像的木材识别方法 被引量:12
14
作者 刘子豪 祁亨年 +1 位作者 张广群 汪杭军 《林业科学》 EI CAS CSCD 北大核心 2013年第11期116-121,共6页
提出一种基于核主成分分析(KPCA)和自适应增强(AdaBoost)的木材识别算法。通过把图像投影到KPCA高维空间,利用PCA方法对该空间中的数据进行特征提取和压缩,使用Gentle AdaBoost进行分类。结果表明:本方法对基于横切面微观构造图像的木... 提出一种基于核主成分分析(KPCA)和自适应增强(AdaBoost)的木材识别算法。通过把图像投影到KPCA高维空间,利用PCA方法对该空间中的数据进行特征提取和压缩,使用Gentle AdaBoost进行分类。结果表明:本方法对基于横切面微观构造图像的木材识别,具有较高的识别率和算法鲁棒性且运行时间快的特点。 展开更多
关键词 核主成分分析 自适应增强 图像压缩 木材识别 计算机视觉
在线阅读 下载PDF
采用多层核学习机的柴油机气门机构故障诊断 被引量:6
15
作者 王涛 李艾华 +1 位作者 姚良 蔡艳平 《振动.测试与诊断》 EI CSCD 北大核心 2010年第4期462-464,共3页
针对柴油机缸盖振动信号的非平稳性以及多种气门故障的线性不可分问题,提出了一种组合核主元分析和支持向量机的多层核学习机方法。该方法使用核主元分析技术从原始特征中提取非线性主元,将其输入到由"一对多"算法构建的支持... 针对柴油机缸盖振动信号的非平稳性以及多种气门故障的线性不可分问题,提出了一种组合核主元分析和支持向量机的多层核学习机方法。该方法使用核主元分析技术从原始特征中提取非线性主元,将其输入到由"一对多"算法构建的支持向量机多分类器中,实现了多种气门故障的定量诊断。试验结果表明,在小样本条件下,该方法能准确识别气门机构的6种状态,且识别精度及测试速度均优于单独使用多类支持向量机方法。 展开更多
关键词 核方法 特征提取 模式分类 核主元分析 支持向量机
在线阅读 下载PDF
结合KPCA和稀疏表示的SAR目标识别方法研究 被引量:33
16
作者 韩萍 王欢 《信号处理》 CSCD 北大核心 2013年第12期1696-1701,共6页
提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Pr... 提出了一种结合KPCA(Kernel Principal Component Analysis)和稀疏表示的合成孔径雷达(Synthetic Aperture Rader,SAR)目标识别方法。该方法首先利用KPCA方法提取样本特征,然后在特征空间内构造稀疏表示模型,通过梯度投影法(Gradient Projection for Sparse Reconstruction,GPSR)求得测试样本的稀疏系数,最后根据稀疏系数的能量特征实现分类识别。利用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)实测SAR数据进行实验,实验结果表明该方法在方位角未知的情况下平均识别率达到96.78%,能够明显地提高目标的识别结果,是一种有效的SAR目标识别方法。 展开更多
关键词 目标识别 合成孔径雷达 核主成分分析 稀疏表示 梯度投影法
在线阅读 下载PDF
绝缘子污秽放电的声发射核主成分诊断法 被引量:8
17
作者 李自品 舒乃秋 +1 位作者 李红玲 汪游胤 《高电压技术》 EI CAS CSCD 北大核心 2012年第11期3008-3014,共7页
为了提高污秽绝缘子外绝缘状态的诊断准确度,利用绝缘子污秽放电时产生的声发射信号评定其外绝缘状态。通过绝缘子污秽试验,由高灵敏度声信号监测装置检测绝缘子的污秽放电声发射信号;对提取的声发射信号进行核主成分分析,将样本从低维... 为了提高污秽绝缘子外绝缘状态的诊断准确度,利用绝缘子污秽放电时产生的声发射信号评定其外绝缘状态。通过绝缘子污秽试验,由高灵敏度声信号监测装置检测绝缘子的污秽放电声发射信号;对提取的声发射信号进行核主成分分析,将样本从低维的状态空间非线性的映射到高维核空间,在核空间采用随机森林方法训练得到分类器群,根据分类器群的分类结果对每个测试样本进行投票表决决定其最终分类。分析和诊断试验结果表明,声发射信号的3个原始特征量经核主成分分析后,变换为65个核特征量,有效地提高了分类器群之间的差异性。基于核主成分分析的随机森林模型的状态诊断结果具有很高的准确性。利用污秽放电声发射信号可进行污秽放电阶段的划分,以达到监测绝缘子的外绝缘状态的目的。 展开更多
关键词 绝缘子 声发射信号 核主成分分析(KPCA) 随机森林 污秽放电 诊断
在线阅读 下载PDF
穿戴式跌倒检测中特征向量的提取和降维研究 被引量:6
18
作者 李雷 张帆 +1 位作者 施化吉 周从华 《计算机应用研究》 CSCD 北大核心 2019年第1期103-105,11,共4页
穿戴式跌倒检测中老年人特征属性过多会造成维数灾难,影响后续跌倒检测精度。针对此问题,首先采用时域分析法提取初始特征向量集,用提出的改进核主成分分析算法(IKPCA)对特征向量进行降维,从而获得优质的特征向量集,使得后续的分类具有... 穿戴式跌倒检测中老年人特征属性过多会造成维数灾难,影响后续跌倒检测精度。针对此问题,首先采用时域分析法提取初始特征向量集,用提出的改进核主成分分析算法(IKPCA)对特征向量进行降维,从而获得优质的特征向量集,使得后续的分类具有更好的效果。IKPCA算法首先利用I-RELIEF算法对初始特征向量集进行特征选择,然后计算跌倒特征向量的信息度量和相似度度量;最后根据跌倒特征向量的相似度度量剔除无效的跌倒特征向量。IKPCA算法不但保持核主成分分析算法(KPCA)较好的降维能力,而且扩充了较好的分类能力。利用真实的数据集进行实验,对比分析表明,相比其他算法,IKPCA算法能够得到更优质的特征向量数据集。 展开更多
关键词 跌倒检测 特征向量 核主成分分析 降维
在线阅读 下载PDF
概率核主成分分析及其应用 被引量:6
19
作者 张九龙 邓筱楠 张志禹 《计算机工程与应用》 CSCD 北大核心 2011年第4期165-167,共3页
主成分分析(PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率核主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,... 主成分分析(PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率核主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,因而其捕获模式非线性特征的能力更强。在KPCA和PPCA的基础上推导了PKPCA过程公式,并在检测液晶屏幕亮点的应用中将PKPCA、PPCA、PCA算法进行比较。实验结果表明,PKPCA的检测率和局部信噪比优于其他两者。 展开更多
关键词 主成分分析 核主成分分析 概率主成分分析 亮点检测 概率核主成分分析
在线阅读 下载PDF
基于小波分析与KPCA的人脸识别方法 被引量:6
20
作者 李伟红 龚卫国 +2 位作者 陈伟民 梁毅雄 尹克重 《计算机应用》 CSCD 北大核心 2005年第10期2339-2341,共3页
提出结合小波变换及KPCA的特点获取人脸特征,设计线性SVM分类器进行分类识别。由于KPCA中核函数的参数选择以及训练样本与测试样本的划分对分类识别有一定的影响,为了获得最优的识别效果,在UM IST人脸数据库上进行相应的实验。结果表明... 提出结合小波变换及KPCA的特点获取人脸特征,设计线性SVM分类器进行分类识别。由于KPCA中核函数的参数选择以及训练样本与测试样本的划分对分类识别有一定的影响,为了获得最优的识别效果,在UM IST人脸数据库上进行相应的实验。结果表明本方法可以获得较好的分类识别率,是一种快速、有效的人脸识别方法。 展开更多
关键词 人脸识别 小波变换(WT) 核主元分析(KPCA) 支持向量机(SVM)
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部