期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
基于FPGA的两阶段配电网拓扑实时辨识算法 被引量:3
1
作者 王冠淇 裴玮 +2 位作者 李洪涛 郝良 马丽 《电力系统自动化》 EI CSCD 北大核心 2024年第12期100-108,共9页
对配电网拓扑进行准确的实时辨识是电力系统安全稳定运行的基础,但随着新能源的接入以及配电网规模不断增大,配电网拓扑结构的动态变化愈加频繁且难以辨识。然而,现有配电网拓扑辨识算法所使用的历史数据需要人工对其进行拓扑标注,且拓... 对配电网拓扑进行准确的实时辨识是电力系统安全稳定运行的基础,但随着新能源的接入以及配电网规模不断增大,配电网拓扑结构的动态变化愈加频繁且难以辨识。然而,现有配电网拓扑辨识算法所使用的历史数据需要人工对其进行拓扑标注,且拓扑辨识时间长,难以实现配电网拓扑实时辨识。因此,文中提出了一种基于现场可编程逻辑门阵列(FPAG)的两阶段配电网拓扑结构实时辨识算法。该算法不需要预先给出配电网拓扑类别的数量,即可对已有历史数据进行相应的拓扑标注及分类,并且基于FPGA实现了对配电网拓扑的实时辨别。该算法分为2个阶段:第1阶段采用变分贝叶斯高斯混合模型,对已有历史数据进行相应的拓扑标注及分类;第2阶段采用麻雀搜索算法,使得支持向量机快速收敛得到最优参数,以实现对配电网拓扑结构的精准辨识。基于该算法,利用FPGA并行架构以及高速高密度特性建立了实时拓扑结构辨识平台。最后,通过算例分析验证了所提辨识方法的有效性和优越性。 展开更多
关键词 配电网 拓扑辨识 现场可编程逻辑门阵列(FPGA) 变分贝叶斯高斯混合模型 麻雀搜索算法 支持向量机
在线阅读 下载PDF
相关向量机及其在变压器故障诊断中的应用 被引量:22
2
作者 尹金良 朱永利 俞国勤 《电力自动化设备》 EI CSCD 北大核心 2012年第8期130-134,共5页
分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方... 分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方法相比,该方法可以取得与其相当甚至更优的故障诊断正确率,相关向量个数明显少于支持向量个数,诊断速度显著提高。 展开更多
关键词 相关向量机 稀疏贝叶斯 支持向量机 核函数 变压器 故障诊断 分类
在线阅读 下载PDF
基于多分类相关向量机的变压器故障诊断新方法 被引量:39
3
作者 尹金良 朱永利 俞国勤 《电力系统保护与控制》 EI CSCD 北大核心 2013年第5期77-82,共6页
变压器故障诊断本质为多分类问题,具有故障样本数据少,故障不确定因素多的特点。现有变压器故障诊断方法中,贝叶斯网络(BN)需要大量样本数据且计算量大,支持向量机(SVM)存在规则化系数确定困难的局限。针对此现状,提出基于多分类相关向... 变压器故障诊断本质为多分类问题,具有故障样本数据少,故障不确定因素多的特点。现有变压器故障诊断方法中,贝叶斯网络(BN)需要大量样本数据且计算量大,支持向量机(SVM)存在规则化系数确定困难的局限。针对此现状,提出基于多分类相关向量机(M-RVM)的变压器故障诊断新方法。该方法以变压器溶解气体含量比值作为M-RVM模型的输入,采用快速type-Ⅱ最大似然(Fast Type-ⅡML)和最大期望估计(EM)的方法进行模型推断,诊断输出为各故障类别的概率,以概率最大的故障类别作为诊断结果。实例分析表明该方法诊断速度较快,能满足工程需要,同基于BN和SVM的变压器故障诊断方法相比,具有较高的诊断正确率。 展开更多
关键词 多分类 相关向量机 贝叶斯网络 支持向量机 变压器故障诊断
在线阅读 下载PDF
基于相关向量机的高光谱影像混合像元分解 被引量:17
4
作者 杨国鹏 周欣 +1 位作者 余旭初 陈伟 《电子学报》 EI CAS CSCD 北大核心 2010年第12期2751-2756,共6页
提出了一种利用相关向量机后验概率进行高光谱影像混合像元分解的方法.基于支持向量机后验概率输出的高光谱影像混合像元分解方法中,类别后验概率需要通过带参数的S形函数近似,而且模型需要通过交叉验证获取较好的规则化系数.相关向量... 提出了一种利用相关向量机后验概率进行高光谱影像混合像元分解的方法.基于支持向量机后验概率输出的高光谱影像混合像元分解方法中,类别后验概率需要通过带参数的S形函数近似,而且模型需要通过交叉验证获取较好的规则化系数.相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,核函数不需要满足Mercer条件.本文从分析支持向量机用于高光谱影像混合像元分解存在的不足出发,介绍了稀疏贝叶斯分类模型和模型参数推断,采用了快速序列稀疏贝叶斯学习算法.通过PHI影像的混合像元分解实验分析,表明了基于相关向量机的高光谱影像混合像元分解方法的优势. 展开更多
关键词 高光谱影像 混合像元分解 稀疏贝叶斯模型 相关向量机
在线阅读 下载PDF
基于相关向量机的机械LiDAR点云数据分类 被引量:10
5
作者 刘志青 李鹏程 +4 位作者 郭海涛 张保明 陈小卫 丁磊 赵传 《红外与激光工程》 EI CSCD 北大核心 2016年第B05期98-104,共7页
针对支持向量机应用于机载LiDAR点云数据分类时存在的模型稀疏性弱、预测结果缺乏概率意义、核函数必须满足Mercer定理等缺点,提出了一种基于相关向量机的LiDAR点云数据分类算法。在分析稀疏贝叶斯分类模型及参数推断、预测基础上,利用... 针对支持向量机应用于机载LiDAR点云数据分类时存在的模型稀疏性弱、预测结果缺乏概率意义、核函数必须满足Mercer定理等缺点,提出了一种基于相关向量机的LiDAR点云数据分类算法。在分析稀疏贝叶斯分类模型及参数推断、预测基础上,利用拉普拉斯方法将相关向量机分类问题转化为回归问题,通过最大化边缘似然函数估计超参数,选择序列稀疏贝叶斯学习方法提高训练速度,构造一对余、一对一分类器实现点云数据多元分类研究。选择Niagara地区及非洲某地区的LiDAR点云数据进行实验,实验结果验证了基于相关向量机的点云分类方法的优势。 展开更多
关键词 激光雷达 分类 稀疏贝叶斯模型 相关向量机
在线阅读 下载PDF
基于相关向量机的短期风速预测模型 被引量:13
6
作者 李慧杰 刘亚南 +4 位作者 卫志农 李晓露 Kwok W Cheung 孙永辉 孙国强 《电力自动化设备》 EI CSCD 北大核心 2013年第10期28-32,共5页
通过对风速的时间序列进行分析,表明该序列具有混沌特性。在此基础上,利用相空间重构理论建立基于相关向量机(RVM)的短期风速预测模型,并对不同的核函数进行分析,选出最优的核函数。与现有的风速预测模型相比,该模型具有高稀疏性、核函... 通过对风速的时间序列进行分析,表明该序列具有混沌特性。在此基础上,利用相空间重构理论建立基于相关向量机(RVM)的短期风速预测模型,并对不同的核函数进行分析,选出最优的核函数。与现有的风速预测模型相比,该模型具有高稀疏性、核函数选择灵活等优点。仿真结果表明,与BP神经网络和支持向量机(SVM)模型相比,RVM模型预测精度更高。 展开更多
关键词 神经网络 支持向量机 相关向量机 相空间重构 短期风速预测 模型
在线阅读 下载PDF
优化组合核函数相关向量机电力负荷预测模型 被引量:43
7
作者 段青 赵建国 马艳 《电机与控制学报》 EI CSCD 北大核心 2010年第6期33-38,共6页
在单一核函数相关向量机模型的基础上,构建高斯核函数分别与多项式核函数和张量积线性样条核函数进行线性组合的多种组合核函数相关向量机中期电力负荷预测模型,并利用粒子群优化算法对组合核函数的各参数进行优化选择。以2001年组织的... 在单一核函数相关向量机模型的基础上,构建高斯核函数分别与多项式核函数和张量积线性样条核函数进行线性组合的多种组合核函数相关向量机中期电力负荷预测模型,并利用粒子群优化算法对组合核函数的各参数进行优化选择。以2001年组织的国际电力负荷预测竞赛提供的公开数据为训练和测试样本,分别对多种核函数相关向量机中期电力负荷预测模型进行仿真预测计算。结果显示,虽然各模型都取得了较好的预测精确度,但是基于组合核函数的相关向量机在各项评价指标上都优于基于单一核函数的相关向量机。还利用相关向量机的概率预测优势得到了其他模式识别模型无法得到的预测误差范围。 展开更多
关键词 负荷预测 稀疏贝叶斯学习 相关向量机 组合核函数 粒子群优化
在线阅读 下载PDF
稀疏贝叶斯模型与相关向量机学习研究 被引量:23
8
作者 杨国鹏 周欣 余旭初 《计算机科学》 CSCD 北大核心 2010年第7期225-228,共4页
虽然支持向量机在模式识别的相关领域得到了广泛应用,但它自身固有许多不足之处。相关向量机是在稀疏贝叶斯框架下提出的稀疏模型,模型没有规则化系数,核函数不要求满足Mercer条件。相关向量机不仅具备良好的泛化能力,而且还能够得到具... 虽然支持向量机在模式识别的相关领域得到了广泛应用,但它自身固有许多不足之处。相关向量机是在稀疏贝叶斯框架下提出的稀疏模型,模型没有规则化系数,核函数不要求满足Mercer条件。相关向量机不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。首先介绍了稀疏贝叶斯回归和分类模型,通过参数推断过程,将相关向量机学习转化为最大化边缘似然函数估计,并分析了3种估计方法,给出了快速序列稀疏贝叶斯学习算法流程。 展开更多
关键词 稀疏贝叶斯模型 相关向量机 支持向量机
在线阅读 下载PDF
软件可靠性预测的相关向量机模型 被引量:7
9
作者 楼俊钢 江建慧 +1 位作者 沈张果 蒋云良 《计算机研究与发展》 EI CSCD 北大核心 2013年第7期1542-1550,共9页
相关向量机是一种解决回归问题非常有效的方法,针对软件失效时间及其之前的m个失效时间数据使用相关向量机进行学习,以建立失效时间之间内在的依赖关系,由此构建新的基于相关向量机的软件可靠性预测模型.在4个数据集上的实验结果表明,... 相关向量机是一种解决回归问题非常有效的方法,针对软件失效时间及其之前的m个失效时间数据使用相关向量机进行学习,以建立失效时间之间内在的依赖关系,由此构建新的基于相关向量机的软件可靠性预测模型.在4个数据集上的实验结果表明,新模型在预测能力上较之广泛使用的基于支持向量机或人工神经网络的软件可靠性预测模型有明显的提高,同时也表明现时失效数据的预测能力比很久之前观测的失效数据更强,最后通过实验对合理的m值及不同数据集上核函数参数取值进行研究. 展开更多
关键词 软件可靠性预测 相关向量机 支持向量机 人工神经网络 稀疏贝叶斯模型
在线阅读 下载PDF
电力系统静态安全状态实时感知的相关向量机法 被引量:19
10
作者 李海英 刘中银 宋建成 《中国电机工程学报》 EI CSCD 北大核心 2015年第2期294-301,共8页
在信息物理系统(cyber physical systems,CPS)深度融合背景下,提出一种安全状态实时感知的相关向量机(relevance vector machine,RVM)数据驱动方法。RVM是贝叶斯概率框架下基于核函数的学习方法,通过多层先验的超参数设置获取模型参数... 在信息物理系统(cyber physical systems,CPS)深度融合背景下,提出一种安全状态实时感知的相关向量机(relevance vector machine,RVM)数据驱动方法。RVM是贝叶斯概率框架下基于核函数的学习方法,通过多层先验的超参数设置获取模型参数的稀疏解,并采用伯努利分布获得分类后验概率。该方法首先根据日前市场的运行与调度规则,产生运行条件,构造安全评估特征集及事故安全分类;然后将基于距离的Relief算法用于特征排序,筛选出与分类紧密相关的特征子集;最后通过RVM分类学习对系统安全状态进行辨识。IEEE 30节点系统测试结果表明,RVM方法的极度稀疏性、高分类精度、概率输出在实时安全状态感知中具有显著优越性。 展开更多
关键词 安全状态感知 相关向量机 贝叶斯概率学习 Relief特征选择 稀疏核模型
在线阅读 下载PDF
基于相关向量机的发电机进相能力建模 被引量:8
11
作者 翟学锋 卫志农 +3 位作者 范立新 徐钢 王成亮 刘亚南 《电力自动化设备》 EI CSCD 北大核心 2015年第3期146-151,共6页
发电机是一个多变量、强耦合的非线性系统,传统的分析方法难以建立精确的发电机进相能力分析模型。提出一种基于相关向量机(RVM)的发电机进相能力模型,以发电机有功功率和无功功率为输入、发电机的功角和电网电压为输出。以典型工况下... 发电机是一个多变量、强耦合的非线性系统,传统的分析方法难以建立精确的发电机进相能力分析模型。提出一种基于相关向量机(RVM)的发电机进相能力模型,以发电机有功功率和无功功率为输入、发电机的功角和电网电压为输出。以典型工况下发电机进相运行试验结果作为训练样本和测试样本,建立某600 MW发电机进相能力RVM模型,并讨论了核函数的选择对RVM模型收敛精度的影响。结果表明所建立的发电机进相RVM模型较之BP神经网络、径向基函数(RBF)神经网络和支持向量机(SVM)模型,精度更高、泛化能力更强,能有效地克服传统方法的局限性,适用于发电机进相运行实时控制。 展开更多
关键词 发电机 进相 相关向量机 BP神经网络:RBF神经网络 支持向量机 建模
在线阅读 下载PDF
基于零范数特征选择的支持向量机模型 被引量:9
12
作者 刘峤 秦志光 +1 位作者 陈伟 张凤荔 《自动化学报》 EI CSCD 北大核心 2011年第2期252-256,共5页
为解决高维稀疏建模问题,本文从经验风险最小化原则出发推导出一个基于零范数约束的特征选择判据,并利用嵌入式设计模式的特点将其与支持向量机方法相结合.仿真实验和真实数据实验表明,该方法不仅具备良好的特征选择性能,而且在稀疏建... 为解决高维稀疏建模问题,本文从经验风险最小化原则出发推导出一个基于零范数约束的特征选择判据,并利用嵌入式设计模式的特点将其与支持向量机方法相结合.仿真实验和真实数据实验表明,该方法不仅具备良好的特征选择性能,而且在稀疏建模问题中表现出良好的分类准确性和泛化能力. 展开更多
关键词 机器学习 特征选择 支持向量机 稀疏建模 正则化
在线阅读 下载PDF
基于相关向量机的图像阈值技术 被引量:10
13
作者 乔立山 陈松灿 王敏 《计算机研究与发展》 EI CSCD 北大核心 2010年第8期1329-1337,共9页
图像阈值化是一种直观有效的图像分割技术,在图像分析、模式识别及计算机视觉中具有重要应用.传统的阈值化方法通常基于某个特定的优化问题,需要在整个灰度范围内搜索最佳阈值(或阈值组合).最近,基于支持向量回归(SVR)的多阈值分割算法... 图像阈值化是一种直观有效的图像分割技术,在图像分析、模式识别及计算机视觉中具有重要应用.传统的阈值化方法通常基于某个特定的优化问题,需要在整个灰度范围内搜索最佳阈值(或阈值组合).最近,基于支持向量回归(SVR)的多阈值分割算法,直接从支持向量(SV)中获得阈值信息,无需对图像施加任何先验假设,并避免了繁琐的优化过程.然而:1.如何从众多SV中获得可靠的阈值尚待解决(SVR阈值方法的公开问题);2.虽然SVR阈值技术避免了传统多阈值算法可能出现的组合优化问题,但是其中超参数的选择往往需要耗时的交叉验证;3.算法在单峰直方图情形下失效.针对这些问题,并受相关向量机(RVM)方法的启发,提出了一种新的基于RVM的多阈值自动选择技术.由于RVM可以极大地约减"SV"数目,并且无需交叉验证进行参数调整,使得最终阈值的确定更加高效、可靠且异常容易;另外所提算法能有效地处理单峰直方图情形,使阈值分割具有更强的适应性.实验表明基于RVM的阈值技术不仅保留了SVR阈值技术的优点,而且解决了其中的公开问题,并显著地提高了算法的效率和适应能力. 展开更多
关键词 图像分割 自动阈值选择 相关向量机 支持向量回归 稀疏核机
在线阅读 下载PDF
基于稀疏贝叶斯学习的电力系统暂态稳定评估 被引量:9
14
作者 段青 赵建国 马艳 《电力自动化设备》 EI CSCD 北大核心 2009年第9期36-40,共5页
介绍了基于稀疏贝叶斯学习理论的模式识别技术相关向量机及其分类器,在此基础上构建了电力系统暂态稳定评估模型。以EPRI36电力系统暂态稳定仿真数据为例,在相同的数据输入和相同的仿真环境下同时构建相关向量机和支持向量机2种暂态稳... 介绍了基于稀疏贝叶斯学习理论的模式识别技术相关向量机及其分类器,在此基础上构建了电力系统暂态稳定评估模型。以EPRI36电力系统暂态稳定仿真数据为例,在相同的数据输入和相同的仿真环境下同时构建相关向量机和支持向量机2种暂态稳定评估模型。仿真预测计算显示,作为一种全新的概率学习模型,相关向量机不仅得到了比支持向量机更高的预测精确度,而且还能得到支持向量机无法完成的概率性预测和更高的稀疏性计算。 展开更多
关键词 概率学习 贝叶斯理论 相关向量机 支持向量机 暂态稳定评估
在线阅读 下载PDF
基于条件分类与证据理论的短期风电功率非参数概率预测方法 被引量:24
15
作者 林优 杨明 +1 位作者 韩学山 安滨 《电网技术》 EI CSCD 北大核心 2016年第4期1113-1119,共7页
提出了一种基于稀疏贝叶斯分类与Dempster-Shafer(D-S)证据理论的短期风电功率概率分布非参数估计方法,预测时间尺度为48 h。该方法首先通过支持向量机(support vector machine,SVM)对风电功率进行点预测;进而将SVM预测误差的范围离散... 提出了一种基于稀疏贝叶斯分类与Dempster-Shafer(D-S)证据理论的短期风电功率概率分布非参数估计方法,预测时间尺度为48 h。该方法首先通过支持向量机(support vector machine,SVM)对风电功率进行点预测;进而将SVM预测误差的范围离散为多个区间,通过建立稀疏贝叶斯分类器对SVM预测误差落入各预定区间的概率进行估计。然后应用D-S证据理论对所有区间对应的概率估计结果进行整合,得到SVM预测误差的整体概率分布。最后叠加误差分布与SVM预测的风电功率值,得到风电功率的概率分布结果。该方法基于稀疏贝叶斯架构构建,具有高稀疏性,确保了模型的泛化能力与计算速度。该方法还系统地计及了风电场输出功率必须满足在[0,GN](GN为风电场装机容量)内取值的边界约束,使预测结果更加符合实际。以某74 MW的风电场为例对上述方法进行了验证,结果表明了该方法的有效性。 展开更多
关键词 风电功率概率预测 非参数估计 支持向量机 稀疏贝叶斯分类 D-S证据理论
在线阅读 下载PDF
一种基于变分相关向量机的特征选择和分类结合方法 被引量:6
16
作者 徐丹蕾 杜兰 +2 位作者 刘宏伟 洪灵 李彦兵 《自动化学报》 EI CSCD 北大核心 2011年第8期932-943,共12页
相关向量机(Relevance vector machine,RVM)是一种函数形式等价于支持向量机(Support vector machine,SVM)的全概率模型,利用变分贝叶斯(Variational Bayesian,VB)方法求解的RVM可以给出所有参数的后验分布.进一步,通过对样本所在原始... 相关向量机(Relevance vector machine,RVM)是一种函数形式等价于支持向量机(Support vector machine,SVM)的全概率模型,利用变分贝叶斯(Variational Bayesian,VB)方法求解的RVM可以给出所有参数的后验分布.进一步,通过对样本所在原始特征空间的稀疏化,基于线性核的RVM可以在分类的同时实现对原始特征的线性选择.本文在传统VB-RVM的基础上提出一种特征选择和分类结合方法.该方法采用Probit模型将分类问题与回归问题有机地结合起来,同时,通过对特征维的幂变换扩展,不仅在分类时增加了样本的信息量,可以构造非线性分类面,而且实现了非线性特征选择的功能.通过对仿真数据和实测数据分别进行实验,证明了该特征选择和分类结合方法的实用性和有效性. 展开更多
关键词 特征选择 稀疏化 相关向量机 PROBIT模型 变分贝叶斯
在线阅读 下载PDF
基于贝叶斯学习的关联向量机及其在软测量中的应用 被引量:11
17
作者 陈佳 颜学峰 钱锋 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期115-119,共5页
介绍了一种与支持向量机(SVM)函数形式相同的稀疏概率模型——关联向量机(RVM),其训练是在贝叶斯框架下进行的,在处理具有噪声的函数回归时,RVM具有很出色的性能。与SVM相比不仅解更稀疏,而且无需调整模型参数,核函数选择也不受限制。将... 介绍了一种与支持向量机(SVM)函数形式相同的稀疏概率模型——关联向量机(RVM),其训练是在贝叶斯框架下进行的,在处理具有噪声的函数回归时,RVM具有很出色的性能。与SVM相比不仅解更稀疏,而且无需调整模型参数,核函数选择也不受限制。将RVM应用于PTA装置溶剂脱水塔塔顶塔底组分软测量建模,仿真结果表明:该方法预测精度较高,具有一定的应用价值。 展开更多
关键词 稀疏贝叶斯 关联向量机 软测量 溶剂脱水塔
在线阅读 下载PDF
基于贝叶斯证据框架的支持向量机负荷建模 被引量:18
18
作者 王振树 李林川 牛丽 《电工技术学报》 EI CSCD 北大核心 2009年第8期127-134,140,共9页
负荷建模一直是电力系统中的难题之一,精确的负荷模型对电力系统数字仿真非常重要。本文提出一种基于贝叶斯证据框架的支持向量机负荷建模方法。根据广域测量的负荷特性数据,利用支持向量机进行负荷建模,选用高斯径向基核函数优化模型结... 负荷建模一直是电力系统中的难题之一,精确的负荷模型对电力系统数字仿真非常重要。本文提出一种基于贝叶斯证据框架的支持向量机负荷建模方法。根据广域测量的负荷特性数据,利用支持向量机进行负荷建模,选用高斯径向基核函数优化模型结构;用贝叶斯证据框架推断准则1解释了支持向量机的训练,又将贝叶斯证据准则2和3应用到支持向量机。采用贝叶斯证据框架的三个准则对负荷模型进行训练并对参数进行了辨识和优化。通过对支持向量机负荷模型的仿真试验,验证了该方法的正确性和有效性。贝叶斯证据框架下的支持向量机负荷模型具有泛化能力强、结构灵活、计算速度快的特点,能够较准确地描述实际负荷特性。 展开更多
关键词 贝叶斯证据框架 负荷建模 支持向量机 参数辨识 广域测量系统
在线阅读 下载PDF
基于稀疏贝叶斯分类器的汽车车型识别 被引量:6
19
作者 张旭东 钱玮 +1 位作者 高隽 方廷健 《小型微型计算机系统》 CSCD 北大核心 2005年第10期1839-1841,共3页
稀疏贝叶斯方法在处理分类问题上具有良好的推广性,并且使用较少的核函数,介绍了一个实时的车型识别系统.它 以每点色彩信息的高斯混合模型来实现对视频图像的背景估计,从而实现对汽车的检测;利用稀疏贝叶斯分类器对检测到的汽 车进行... 稀疏贝叶斯方法在处理分类问题上具有良好的推广性,并且使用较少的核函数,介绍了一个实时的车型识别系统.它 以每点色彩信息的高斯混合模型来实现对视频图像的背景估计,从而实现对汽车的检测;利用稀疏贝叶斯分类器对检测到的汽 车进行车型分类.实验结果表明稀疏贝叶斯分类器不仅具有支持向量机的性能,而且比SVM使用更少的按函数.实验取得了 较好的分类效果. 展开更多
关键词 高斯混合模型 运动目标检测 稀疏贝叶斯 支持向量机
在线阅读 下载PDF
基于统计学习的多层医学图像语义建模方法 被引量:4
20
作者 林春漪 尹俊勋 +2 位作者 高学 陈建宇 孙少晖 《深圳大学学报(理工版)》 EI CAS 北大核心 2007年第2期138-143,共6页
提出一种在小样本的情况下,基于多层贝叶斯网络的医学图像语义建模方法.该方法采用支持向量机实现从低层视觉特征到对象语义的映射,使用贝叶斯网络融合对象语义,提取高级语义,从而建立一个多层医学图像语义模型,可支持多层次的医学图像... 提出一种在小样本的情况下,基于多层贝叶斯网络的医学图像语义建模方法.该方法采用支持向量机实现从低层视觉特征到对象语义的映射,使用贝叶斯网络融合对象语义,提取高级语义,从而建立一个多层医学图像语义模型,可支持多层次的医学图像语义自动标注及其检索.将该方法用于星形细胞瘤恶性程度的语义提取,并建立一个多层语义模型.实验表明,该模型与使用K近邻分类器或高斯混合模型取代SVM的语义模型相比,查全率有明显的提高. 展开更多
关键词 多层贝叶斯网络 支持向量机 语义建模 医学图像 机器学习
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部