近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出...近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。展开更多
基于稀疏表示分类(SRC,sparse representation for classification)是近年来模式识别领域中备受关注的一个研究热点。当每类训练样本较少时,SRC的识别效果往往不理想。为解决此问题,人们提出了拓展的稀疏表示分类算法。它引入了训练样...基于稀疏表示分类(SRC,sparse representation for classification)是近年来模式识别领域中备受关注的一个研究热点。当每类训练样本较少时,SRC的识别效果往往不理想。为解决此问题,人们提出了拓展的稀疏表示分类算法。它引入了训练样本的类内变量矩阵,来补充每类训练样本信息。但是,该方法很难获取普遍存在于复杂数据如图像中的非线性信息。为此,提出了特征空间中的拓展稀疏人脸识别算法。该算法将样本集非线性映射到新的特征空间中,计算每个训练样本在表示测试样本时所做的贡献。根据贡献大小,给每个训练样本赋予一定的权重。同时,利用类内变量矩阵,共同表示测试样本。实验表明所提出的算法优于其它经典稀疏表示分类算法。展开更多
文摘近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。
文摘基于稀疏表示分类(SRC,sparse representation for classification)是近年来模式识别领域中备受关注的一个研究热点。当每类训练样本较少时,SRC的识别效果往往不理想。为解决此问题,人们提出了拓展的稀疏表示分类算法。它引入了训练样本的类内变量矩阵,来补充每类训练样本信息。但是,该方法很难获取普遍存在于复杂数据如图像中的非线性信息。为此,提出了特征空间中的拓展稀疏人脸识别算法。该算法将样本集非线性映射到新的特征空间中,计算每个训练样本在表示测试样本时所做的贡献。根据贡献大小,给每个训练样本赋予一定的权重。同时,利用类内变量矩阵,共同表示测试样本。实验表明所提出的算法优于其它经典稀疏表示分类算法。