期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
采用自适应变异粒子群优化SVM的行为识别 被引量:11
1
作者 张国梁 贾松敏 +1 位作者 张祥银 徐涛 《光学精密工程》 EI CAS CSCD 北大核心 2017年第6期1669-1678,共10页
为了提高对视频序列中人体行为的识别能力,建立了基于局部特征的动作识别框架。通过时空特征提取及编码和SVM分类器参数优化两部分对该框架所涉及算法进行了研究。首先,采用Harris3D检测器获取时空兴趣点(STIP),以方向梯度直方图(HOG)... 为了提高对视频序列中人体行为的识别能力,建立了基于局部特征的动作识别框架。通过时空特征提取及编码和SVM分类器参数优化两部分对该框架所涉及算法进行了研究。首先,采用Harris3D检测器获取时空兴趣点(STIP),以方向梯度直方图(HOG)和光流方向直方图(HOF)对STIP进行描述,并引入Fisher向量实现对特征描述子的编码;由于固定参数下SVM动作分类模型存在泛化能力不足的问题,将粒子群算法应用于各动作分类器参数寻优过程中,针对种群多样性逐代变化的特点,构建粒子聚集度模型,并利用其动态调节各代粒子的变异概率;最后,利用KTH和HMDB51数据集对所提方法进行验证。结果表明,所提自适应变异粒子群算法(AMPSO)能够有效避免种群陷入局部最优,具备较强的全局寻优能力;在KTH和HMDB51数据集上的识别准确率分别为87.50%和26.41%,优于其余2种识别方法。实验证明,AMPSO算法收敛性能良好且整体识别框架具有较高的实用性和准确性。 展开更多
关键词 人体行为识别 自适应变异粒子群算法 时空兴趣点 特征编码 支持向量机
在线阅读 下载PDF
改进联合彩色和深度图像特征的人体行为识别 被引量:2
2
作者 周鑫燚 甘胜江 +1 位作者 孙连海 匡胤 《计算机工程与应用》 CSCD 北大核心 2017年第8期180-185,共6页
与传统光学相机相比,能同步获取RGB图像和深度图像数据,对人体行为识别提供了新的解决方案。因此,分别对RGB和深度图像序列提取改进的时空兴趣点特征,并基于一定规则实现时空兴趣点特征的融合。由于融合后特征的冗余性,基于时空聚类的方... 与传统光学相机相比,能同步获取RGB图像和深度图像数据,对人体行为识别提供了新的解决方案。因此,分别对RGB和深度图像序列提取改进的时空兴趣点特征,并基于一定规则实现时空兴趣点特征的融合。由于融合后特征的冗余性,基于时空聚类的方法,对特征进行优化处理,并采用SVM分类器进行训练和测试。实验结果表明提出的RGB和深度图像特征联合方法的行为识别平均准确率为91%,相对于其他方法取得了更好的识别结果。 展开更多
关键词 深度传感器 时空兴趣点 特征融合 行为识别
在线阅读 下载PDF
基于改进时空兴趣点特征的双人交互行为识别 被引量:6
3
作者 王佩瑶 曹江涛 姬晓飞 《计算机应用》 CSCD 北大核心 2016年第10期2875-2879,2884,共6页
针对实际监控视频下双人交互行为的兴趣点特征选取不理想,且聚类词典中冗余单词导致识别率不高的问题,提出一种基于改进时空兴趣点(STIP)特征的交互行为识别方法。首先,引入基于信息熵的不可跟踪性检测方法,对序列图像进行跟踪得到交互... 针对实际监控视频下双人交互行为的兴趣点特征选取不理想,且聚类词典中冗余单词导致识别率不高的问题,提出一种基于改进时空兴趣点(STIP)特征的交互行为识别方法。首先,引入基于信息熵的不可跟踪性检测方法,对序列图像进行跟踪得到交互动作的前景运动区域,仅在此区域内提取时空兴趣点以提高兴趣点检测的准确性。其次采用3维尺度不变特性转换(3D-SIFT)描述子对检测得到的兴趣点进行表述,利用改进的模糊C均值聚类方法得到视觉词典,以提升词典的分布特性;在此基础上建立词袋模型,即将训练集样本向词典进行投影得到每帧图像的直方图统计特征表示。最后,采用帧帧最近邻分类方法进行双人交互动作识别。在UT-interaction数据库上进行测试,该算法得到了91.7%的正确识别率。实验结果表明,通过不可跟踪性检测得到的时空兴趣点的改进词袋算法可以较大程度提高交互行为识别的准确率,并且适用于动态背景下的双人交互行为识别。 展开更多
关键词 时空兴趣点 信息熵 双人交互行为识别 词袋模型 模糊C均值 3维尺度不变特性转换 最近邻分类器
在线阅读 下载PDF
基于时空兴趣点和概率潜动态条件随机场模型的在线行为识别方法 被引量:3
4
作者 吴亮 何毅 +1 位作者 梅雪 刘欢 《计算机应用》 CSCD 北大核心 2018年第6期1760-1764,共5页
针对在线行为连续序列的识别问题以及行为识别模型的稳定性问题,提出一种监控视频中基于概率潜动态条件随机场(PLDCRF)的在线行为识别方法。首先,应用时空兴趣点(STIP)对行为特征进行提取;再利用PLDCRF模型识别室内人体的活动状态。PLD... 针对在线行为连续序列的识别问题以及行为识别模型的稳定性问题,提出一种监控视频中基于概率潜动态条件随机场(PLDCRF)的在线行为识别方法。首先,应用时空兴趣点(STIP)对行为特征进行提取;再利用PLDCRF模型识别室内人体的活动状态。PLDCRF模型融合了隐含状态变量,能够构建姿态序列子结构,可以选取姿态之间的动态特征,并且直接标记出未分割序列;同时也可以正确地标记出行为间的转换过程,从而明显改善了行为识别的效果。隐含条件随机场(HCRF)、潜动态条件随机场(LDCRF)、潜动态条件神经场(LDCNF)以及PLDCRF模型对10种不同动作的识别率比较结果表明,所提PLDCRF模型对连续的行为序列的综合识别能力更强,并且有更好的稳定性。 展开更多
关键词 视频监控 在线行为识别 时空兴趣点 概率潜动态条件随机场
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部