期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
空间支持向量域分类器 被引量:8
1
作者 梁锦锦 刘三阳 吴德 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第6期1080-1083,1088,共5页
构造了一种空间支持向量域分类器(SSVDC).在训练阶段分别对正负两类样本进行支持向量域描述,根据描述边界将数据空间划分为互不相交区域,并设定相应的分类准则.在测试阶段,分别计算待识别样本与两个最小包围超球球心的距离,根据其与超... 构造了一种空间支持向量域分类器(SSVDC).在训练阶段分别对正负两类样本进行支持向量域描述,根据描述边界将数据空间划分为互不相交区域,并设定相应的分类准则.在测试阶段,分别计算待识别样本与两个最小包围超球球心的距离,根据其与超球半径的大小关系确定待识别样本所处区域,并采取相应分类准则完成分类.UCI数据集上的多个数值实验表明,与支持向量机(SVM),支持向量域分类器(SVDC)相比,SSVDC具有好的鲁棒性,训练时间可缩短为SVM的20.6%,分类精度比SVDC提高45.9%. 展开更多
关键词 空间支持向量域分类器 支持向量域描述 描述边界 区域 鲁棒性 模式识别
在线阅读 下载PDF
基于支持向量机元分类器的体育视频分类 被引量:11
2
作者 张龙飞 曹元大 +1 位作者 周艺华 李剑 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第1期41-44,67,共5页
为弥补特征提取中的语义缺陷,提出了一种利用领域知识规则填补特征与高级语义之间鸿沟的思想,从体育视频中对语义对象进行有效的特征提取,并采用支持向量机元分类器和组合策略对体育视频进行分类的方法.实验表明,该分类方法对大部分体... 为弥补特征提取中的语义缺陷,提出了一种利用领域知识规则填补特征与高级语义之间鸿沟的思想,从体育视频中对语义对象进行有效的特征提取,并采用支持向量机元分类器和组合策略对体育视频进行分类的方法.实验表明,该分类方法对大部分体育视频都具有很好的分类效果,平均准确率可达92.23%,优于其他提取特征无语义关联的分类方法. 展开更多
关键词 视频分类 领域知识规则 支持向量机 体育视频分类 元分类器
在线阅读 下载PDF
基于类分布的领域自适应支持向量机 被引量:10
3
作者 应文豪 王士同 +1 位作者 邓赵红 王骏 《自动化学报》 EI CSCD 北大核心 2013年第8期1273-1288,共16页
现有的领域自适应方法在定义领域间分布距离时,通常仅从领域样本的整体分布上考虑,而未对带类标签的领域样本分布分别进行考虑,从而在一些具有非平衡数据集的应用领域上表现出一定的局限性.对此,在充分考虑源领域样本类信息的基础上,基... 现有的领域自适应方法在定义领域间分布距离时,通常仅从领域样本的整体分布上考虑,而未对带类标签的领域样本分布分别进行考虑,从而在一些具有非平衡数据集的应用领域上表现出一定的局限性.对此,在充分考虑源领域样本类信息的基础上,基于结构风险最小化模型,提出了基于类分布的领域自适应支持向量机(Domain adaptation support vector machine based on class distribution,CDASVM),并将其拓展为可处理多源问题的多源领域自适应支持向量机(CDASVM from multiple sources,MSCDASVM),在人造和真实的非平衡数据集上的实验结果表明,所提方法只有优化或可比较的模式分类性能. 展开更多
关键词 领域自适应 支持向量机 迁移学习 再生核HILBERT空间
在线阅读 下载PDF
基于信号特征空间的TDCS干扰分类识别 被引量:13
4
作者 王桂胜 任清华 +2 位作者 姜志刚 刘洋 徐兵政 《系统工程与电子技术》 EI CSCD 北大核心 2017年第9期1950-1958,共9页
针对变换域通信系统中干扰信号的分类识别问题,提出了一种基于信号特征空间的支持向量机(signal feature space-support vector machine,SF-SVM)干扰分类算法。首先,基于干扰信号模型和信号空间理论对干扰信号进行特征提取,并建立信号... 针对变换域通信系统中干扰信号的分类识别问题,提出了一种基于信号特征空间的支持向量机(signal feature space-support vector machine,SF-SVM)干扰分类算法。首先,基于干扰信号模型和信号空间理论对干扰信号进行特征提取,并建立信号特征空间,进而针对二分类和多分类问题提出了SF-SVM分类算法,设计了干扰信号的多分类识别器。仿真结果表明,与干扰信号的传统分类算法相比,SF-SVM不仅提高了分类精度,而且缩短了训练时间;设计的多分类识别器在信噪比达到8dB时,对6种干扰信号识别性能及对变换域通信系统性能都有所提升。 展开更多
关键词 变换域通信系统 干扰分类识别 信号特征空间 支持向量机
在线阅读 下载PDF
支持向量域多分类器 被引量:7
5
作者 吴德 刘三阳 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第6期87-91,共5页
为解决多分类支持向量机计算量大、训练时间长的问题,构造了支持向量域多分类器(MS-VDC).在训练阶段,运用支持向量域描述求得各类样本的最小包围超球,进而将数据空间划分为不同区域;在测试阶段,计算待识别样本与最小包围超球球心的距离... 为解决多分类支持向量机计算量大、训练时间长的问题,构造了支持向量域多分类器(MS-VDC).在训练阶段,运用支持向量域描述求得各类样本的最小包围超球,进而将数据空间划分为不同区域;在测试阶段,计算待识别样本与最小包围超球球心的距离,并判断其空间位置;对超球重叠以及超球外区域的样本,定义一种相对类距离,判断样本归属该值较小的类.MSVDC避免了重复利用训练样本,降低了内存占用并提高了计算效率.数值实验结果表明:MSVDC具有好的鲁棒性,分类精度可高达98.89%,分别比一对多和一对一算法高4.51%和1.24%,训练时间分别为一对多和一对一算法的18.06%和55.41%. 展开更多
关键词 多分类器 支持向量域描述 最小包围超球 相对类距离 空间位置
在线阅读 下载PDF
基于空间支持向量域分类器的人脸识别 被引量:2
6
作者 杨定礼 严石 杨银贤 《计算机工程与应用》 CSCD 北大核心 2011年第2期176-178,共3页
提出了一种基于小波变换、奇异值分解与空间支持向量域分类器相结合的人脸识别方法。在使用空间支持向量分类器对不同人脸图像的奇异特征向量进行分类时,计算所测样本到各个超球球心的距离,并根据其与超球半径的关系来判断其所归属。并... 提出了一种基于小波变换、奇异值分解与空间支持向量域分类器相结合的人脸识别方法。在使用空间支持向量分类器对不同人脸图像的奇异特征向量进行分类时,计算所测样本到各个超球球心的距离,并根据其与超球半径的关系来判断其所归属。并在ORL人脸数据库中进行实验。实验表明提出的人脸识别方法识别精度可达97.5%。 展开更多
关键词 空间支持向量域分类器 奇异值分解 人脸识别
在线阅读 下载PDF
集成特征选择的最优化支持向量机分类器模型研究 被引量:6
7
作者 赵宇 陈锐 刘蔚 《计算机科学》 CSCD 北大核心 2016年第8期177-182,215,共7页
考虑将特征选择集成到支持向量机分类器中,提出集成特征选择的最优化支持向量机分类器——FS-SDPSVM(Feature Selection in Semi-definite Program for Support Vector Machine)。该模型将每个特征分别在核空间中做特征映射,然后通过参... 考虑将特征选择集成到支持向量机分类器中,提出集成特征选择的最优化支持向量机分类器——FS-SDPSVM(Feature Selection in Semi-definite Program for Support Vector Machine)。该模型将每个特征分别在核空间中做特征映射,然后通过参数组合构成新的核矩阵,将特征选择过程与机器分类过程统一在一个优化目标下,同时达到特征选择与分类最优。在特征筛选方面,根据模型参数提出用于特征筛选的特征支持度和特征贡献度,通过控制二者的上下限可以在最优分类和最少特征之间灵活取舍。实证中分别将最优分类(FS-SDP-SVM1)和最少特征(FS-SDPSVM2)两类集成化特征选择算法与Relief-F、SFS、SBS算法在UCI机器学习数据和人造数据中进行对比实验。结果表明,提出的FS-SDP-SVM算法在保持较好泛化能力的基础上,在多数实验数据集中实现了最大分类准确率或最少特征数量;在人工数据中,该方法可以准确地选出真正的特征,去除噪声特征。 展开更多
关键词 特征选择 集成化方法 支持向量机分类器 特征核子空间 半正定规划
在线阅读 下载PDF
基于训练特征空间分布的雷达地面目标鉴别器设计 被引量:9
8
作者 李龙 刘峥 《电子与信息学报》 EI CSCD 北大核心 2016年第4期950-957,共8页
该文对雷达地面目标高分辨1维距离像目标识别中的库外目标鉴别问题,提出一种基于训练特征空间分布的雷达地面目标鉴别器。在训练阶段利用基于相关系数预处理的K-Means聚类方法对库内目标样本特征空间进行区域划分,并采用基于空间分布的... 该文对雷达地面目标高分辨1维距离像目标识别中的库外目标鉴别问题,提出一种基于训练特征空间分布的雷达地面目标鉴别器。在训练阶段利用基于相关系数预处理的K-Means聚类方法对库内目标样本特征空间进行区域划分,并采用基于空间分布的支撑向量域描述方法确定样本特征空间的边界与支撑向量,利用样本特征空间边界与加权K近邻原则对目标类别进行判决。该方法解决了库内目标与库外目标的鉴别问题,提高了目标识别系统的总体性能。针对多种不同姿态下目标特征空间非均匀聚合的特点,对训练样本特征空间进行区域划分,减小模板匹配搜索运算规模,保证目标鉴别所需的实时性工作要求。最后通过仿真和实测数据验证了该方法具备优良的鉴别性能与良好的实时处理能力。 展开更多
关键词 目标鉴别 高分辨距离像 K-MEANS聚类 支撑向量域描述 K近邻分类器
在线阅读 下载PDF
基于支持向量域的分离超平面 被引量:1
9
作者 刘万里 刘三阳 薛贞霞 《系统工程与电子技术》 EI CSCD 北大核心 2008年第4期748-751,共4页
为了提高支持向量机(support vector machines,SVM)和支持向量域分类器(support vector domainclassifier,SVDC)的精度,减少SVM的训练时间,建立一种分离超平面。该算法首先通过确定参数以减少每类的野点。然后分别对每类样本应用support... 为了提高支持向量机(support vector machines,SVM)和支持向量域分类器(support vector domainclassifier,SVDC)的精度,减少SVM的训练时间,建立一种分离超平面。该算法首先通过确定参数以减少每类的野点。然后分别对每类样本应用support vector domain description(SVDD)算法分别进行描述以求取两个超球的球心和边界向量;根据到这两个超球心的最大距离和为准则来确定出分类超平面的法向量。最后在两球相邻边界中间点建立一个分离超平面。该方法是从整体上考虑分类信息,是尝试SVDD和SVM的结合。实验结果表明,提出的算法与SVDC相比,精度有了显著提高;与SVM相比,不仅精度有所提高,而且训练速度随着样本容量的增大也有很大提高。 展开更多
关键词 支持向量域描述 分离超平面 支持向量机 分类器
在线阅读 下载PDF
共享隐空间迁移SVM 被引量:3
10
作者 董爱美 王士同 《自动化学报》 EI CSCD 北大核心 2014年第10期2276-2287,共12页
在机器学习中,迁移学习被证明能有效使用一个领域信息提高另一个领域中受训模型的分类精度.迁移学习总是假设相关领域间共享某些隐含因素,但在当前的迁移学习方法中,该部分隐含因素依然未得到充分探讨.本研究引入低维共享隐空间的迁移... 在机器学习中,迁移学习被证明能有效使用一个领域信息提高另一个领域中受训模型的分类精度.迁移学习总是假设相关领域间共享某些隐含因素,但在当前的迁移学习方法中,该部分隐含因素依然未得到充分探讨.本研究引入低维共享隐空间的迁移学习方法,基于经典支持向量机(Support vector machine,SVM)分类模型得到融入共享隐空间的迁移支持向量机,该模型较以往相关方法能更好地利用隐空间这一有效信息,从而提高所得分类器的泛化性能.相关实验结果亦验证了所提方法的有效性. 展开更多
关键词 迁移学习 大间隔分类器 隐空间 支持向量机
在线阅读 下载PDF
小波域马铃薯典型虫害图像特征选择与识别 被引量:23
11
作者 肖志云 刘洪 《农业机械学报》 EI CAS CSCD 北大核心 2017年第9期24-31,共8页
为准确、快速地识别马铃薯典型虫害,提出了一种基于小波域的马铃薯典型虫害特征提取与识别方法。该方法以自然环境下的马铃薯虫害分割图像为对象,提取小波域高斯空间模型的高频协方差阵特征值与低频低阶矩(HELM)的12个不变纹理特征、空... 为准确、快速地识别马铃薯典型虫害,提出了一种基于小波域的马铃薯典型虫害特征提取与识别方法。该方法以自然环境下的马铃薯虫害分割图像为对象,提取小波域高斯空间模型的高频协方差阵特征值与低频低阶矩(HELM)的12个不变纹理特征、空间域Hu不变矩的4个形状特征,进行支持向量机(SVM)的虫害分类识别。通过对8类典型虫害的识别,试验结果表明:在SVM识别方法下,本文HELM特征提取方法,相比传统纹理特征提取方法,在特征计算量不增加的同时,平均识别率至少提高了17个百分点;在HELM特征与Hu矩特征下,本文SVM的运行时间为0.481 s,比人工神经网络快了近2 s,平均识别率为97.5%,比人工神经网络、贝叶斯分类器识别率提高了至少6个百分点,有明显的识别优势。 展开更多
关键词 马铃薯虫害 小波域 高斯空间模型 特征选择 图像识别 支持向量机
在线阅读 下载PDF
基于高分一号遥感影像的绿地信息提取 被引量:2
12
作者 李巍 丁晨旸 李萍 《安徽农业科学》 CAS 2017年第14期208-210,共3页
对高分一号卫星影像进行大气校正、几何校正、裁剪等,利用Libsvm 4.0在Matlab平台里编程进行交叉验证网格法寻优,最终获得支持向量机分类的最佳惩罚系数为45,不敏感系数为0.31。改进支持向量机分类器绿地分类精度为94.6%,该提取精度能... 对高分一号卫星影像进行大气校正、几何校正、裁剪等,利用Libsvm 4.0在Matlab平台里编程进行交叉验证网格法寻优,最终获得支持向量机分类的最佳惩罚系数为45,不敏感系数为0.31。改进支持向量机分类器绿地分类精度为94.6%,该提取精度能满足高分辨率遥感影像在城市绿地动态监测。 展开更多
关键词 遥感 高分一号影像 城市绿地 支持向量机分类器
在线阅读 下载PDF
KSVDD及其在拒识判别中的应用 被引量:2
13
作者 徐引玲 《计算机工程》 CAS CSCD 北大核心 2010年第19期195-197,共3页
为提高支持向量域分类器(SVDC)的分类精度和鲁棒性,提出基于K近邻(KNN)和支持向量域描述(SVDD)的分类器KNN-SVDD(KSVDD)。该分类器对单类内部的样本采用SVDD的判别准则,对类交叉区域及描述边界外的样本采用KNN的判别准则。通过拒绝描述... 为提高支持向量域分类器(SVDC)的分类精度和鲁棒性,提出基于K近邻(KNN)和支持向量域描述(SVDD)的分类器KNN-SVDD(KSVDD)。该分类器对单类内部的样本采用SVDD的判别准则,对类交叉区域及描述边界外的样本采用KNN的判别准则。通过拒绝描述边界外的样本,KSVDD可应用于拒识判别。UCI数据集上的数值实验表明,KSVDD分类精度与支持向量机(SVM)相当且均比SVDC高,训练时间比SVM短,鲁棒性强,在拒识判别中有良好表现。 展开更多
关键词 支持向量域分类器 K近邻 支持向量域描述 拒识判别 鲁棒性
在线阅读 下载PDF
基于损失最小化的SVM多类网页分类算法
14
作者 邵浩然 张亮 马范援 《计算机应用与软件》 CSCD 北大核心 2005年第7期16-17,50,共3页
本文提出一种基于损失最小化的SVM多类网页分类算法,该算法在多类的网页分类问题上将基于损失最小化的SVM分类算法和KNN相结合,在选择分类器顺序的问题上采用剩余样本最小错误率方法。实验表明该方法简单有效,较大地提高了SVM分类算法... 本文提出一种基于损失最小化的SVM多类网页分类算法,该算法在多类的网页分类问题上将基于损失最小化的SVM分类算法和KNN相结合,在选择分类器顺序的问题上采用剩余样本最小错误率方法。实验表明该方法简单有效,较大地提高了SVM分类算法的准确性。 展开更多
关键词 分类算法 SVM 最小化 网页 最小错误率 分类问题 KNN 分类器 准确性
在线阅读 下载PDF
优化局部鉴别的领域相关支持向量机
15
作者 任世锦 宋执环 +1 位作者 凌萍 杨茂云 《小型微型计算机系统》 CSCD 北大核心 2014年第10期2363-2369,共7页
利用数据集几何结构鉴别信息、未标记数据集等隐含先验信息是提高模式分类器性能的有效方法.实际数据集不仅具有多模态、含噪、高维等特性,而且训练数据集和测试数据集分布存在差异的现象,降低了支持向量机(Support vector machine,SVM... 利用数据集几何结构鉴别信息、未标记数据集等隐含先验信息是提高模式分类器性能的有效方法.实际数据集不仅具有多模态、含噪、高维等特性,而且训练数据集和测试数据集分布存在差异的现象,降低了支持向量机(Support vector machine,SVM)的性能.基于迁移学习、局部Fisher鉴别分析等方法,提出一种优化局部鉴别领域相关支持向量机算法.该方法提出一种基于维数约简的自适应距离度量学习方法,消除数据噪声以及冗余特征,更好地描述数据局部几何特性;通过把局部Fisher鉴别信息嵌入到SVM,提高了算法对多模态、不可分数据集的分类性能;把源数据集与目标数据集分布差异信息引入SVM目标函数中,解决了因训练数据与目标数据数量差别过大而导致传统SVM性能下降的问题.基于最小二乘SVM原理和ε-dragging技术把本文方法扩展到多分类问题,保证算法的泛化性能,降低多分类器训练计算量.仿真结果表示,本文方法具有良好的模式分类性能. 展开更多
关键词 支持向量机 领域相关 局部Fisher鉴别分析 距离度量学习 多分类
在线阅读 下载PDF
保局性数据域描述单类分类器
16
作者 郑建炜 蒋一波 王万良 《计算机科学》 CSCD 北大核心 2011年第11期208-212,共5页
由于缺少对数据结构信息的考虑,现有的域描述型单类分类器得到的支撑面往往是次优解。因此,以支持向量数据描述(SVDD)算法为基础,通过一种简易的形式引入数据亲和因子以保持样本局部特性,提出保局性数据域描述分类器(LPDD),使成簇的数... 由于缺少对数据结构信息的考虑,现有的域描述型单类分类器得到的支撑面往往是次优解。因此,以支持向量数据描述(SVDD)算法为基础,通过一种简易的形式引入数据亲和因子以保持样本局部特性,提出保局性数据域描述分类器(LPDD),使成簇的数据作用被强化,而呈零星分布的数据影响力被削弱,引导分类支撑面自动靠近数据高密区而提高算法性能。此外,为适应大样本应用场合,采用序列最小优化算法进行模型参数调整。实验证明,所提算法无论在训练速率还是在分类性能上都优于SVDD。 展开更多
关键词 亲和因子 支持向量域描述 序列最小优化 单类分类器
在线阅读 下载PDF
基于构造映射的支持向量分类机
17
作者 刘琼荪 杜会锋 《计算机工程与应用》 CSCD 北大核心 2009年第27期130-132,共3页
构造了基于马氏距离和Cupula函数的距离映射和条件概率映射,将高维空间中的样本转化为二维空间中的新样本,并对新样本进行简易处理,构建了可分支持向量分类机,其特点是简单,易于实现。实验表明取得了较好的分类效果。
关键词 映射 二维空间 可分支持向量机
在线阅读 下载PDF
基于模糊关联空间的激光雷达三维扫描数据过滤研究 被引量:3
18
作者 陈改霞 叶萧然 《现代雷达》 CSCD 北大核心 2023年第12期102-108,共7页
激光雷达三维扫描数据中存在大量无效点和有效点,但是两者之间的空间关联性阈值处在不断变动中,以固定关联规则的过滤方式很难准确区分,造成实际过滤应用效果较差。为此,提出基于模糊关联空间的激光雷达三维扫描无效数据过滤方法。采集... 激光雷达三维扫描数据中存在大量无效点和有效点,但是两者之间的空间关联性阈值处在不断变动中,以固定关联规则的过滤方式很难准确区分,造成实际过滤应用效果较差。为此,提出基于模糊关联空间的激光雷达三维扫描无效数据过滤方法。采集激光雷达三维扫描样本数据构建无效数据识别规则库,将无效数据识别规则库中的无效数据集合转换为模糊集合,并利用聚类算法填补无效数据造成的数据空格,以避免出现数据过滤误差。填补后运用支持向量机分类器计算激光雷达三维扫描数据之间的模糊关联度,并对其进行分类。结合分类结果利用网闸过滤组织对激光雷达三维扫描无效数据过滤。实验结果表明:这种方法过滤精度高,具有较好的过滤效果,时间复杂度低、过滤耗时短,实际应用效果较好。 展开更多
关键词 激光雷达 三维扫描数据 模糊关联空间 数据过滤 聚类算法 支持向量机分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部