Dwarfing is useful to reduce plant height,when breeding high-yielding and non-lodging crops.In this study,a set of natural storage protein subunit-null dwarf mutants of soybean was reported that showed strongly reduce...Dwarfing is useful to reduce plant height,when breeding high-yielding and non-lodging crops.In this study,a set of natural storage protein subunit-null dwarf mutants of soybean was reported that showed strongly reduced plant stature and deficiency in various 7S and 11S subunits,designated as snd1 mutants.Under normal growth conditions,the snd1 mutants showed a severe dwarf phenotype,with plant height of about 25 cm.Compared with wild-type DN47,the mutant snd1 exhibited no obvious morphological differences at the early stage of development.All the snd1 mutants examined had fewer nodes and shorter than normal internodes;the leaves were similar in shape to normal parents,but were dark-green at the mature stage.The flower size was similar to DN47;however,the flowering period was shorter than in the wild-type.Significant variation was noted for protein content,oil content of the seeds and size of seeds(weight of 100 seeds)among 17 snd1 dwarf lines.Genetic analysis indicated that the dwarfism of snd1 was controlled by a single recessive gene.The snd1 dwarf mutant had markedly different dynamic levels of the endogenous hormones gibberellin(GA),brassinosteroid,indole-3-acetic acid and abscisic acid,at the seedling stage.Exogenous GA3 treatment led to recovery of the plant height phenotype of the snd1 mutant;GA3 at 0.1 mm had the largest effect on enhancing plant height.Using molecular markers,snd1 gene was approximately mapped in an interval of 603 kb between markers Satt166 and Satt561 on chromosome 19.Snd1 mutant provided valuable material for hypoallergenic soybean breeding and the snd1 gene might be a novel gene related to plant height in soybean.展开更多
A survey of petal-specific proteomes of soybean(Glycine max(L.) Merr[Non-italic].) was conducted comparing protein expression profiles in different petals. Two-dimensional polyacrylamide gel electrophoresis reference ...A survey of petal-specific proteomes of soybean(Glycine max(L.) Merr[Non-italic].) was conducted comparing protein expression profiles in different petals. Two-dimensional polyacrylamide gel electrophoresis reference maps of protein extracts from standard petals(SP), lateral wings(LW), keel petals(KP), and reproductive organs(RO)(a mixture of stamen and carpel) were obtained. Protein expression in the three petal types was compared using Image Master TM 2 D platinum 6.0 software. This indicated that the proportion of homologous proteins between SP and LW was 59.27%, between SP and KP was 61.48%, and between LW and KP was 60.05%. Within a mass range of 6.5-200.0 ku and pH 4.0-7.0, approximately 590, 646, 544, and 700 protein spots were detected in SP, LW, KP, and RO, respectively. A total of 82 differentially expressed proteins were detected. Sixty-four of these detected spots were differentially expressed and showed more than 2-fold changes in abundance; of these 64 proteins, 26 showed increased expression and 38 showed decreased expression. Among these spots, single organ-specific proteins were also identified.They were ID 49(60.9 ku), ID 45(50.0 ku), and ID 46(40.5 ku) in RO, ID 98(42.0 ku) in SP, and ID 05(29.0 ku) in KP. A total of 14 protein spots from 82 differentially expressed proteins were identified with LC-MS/MS. Further protein identification was conducted using the SwissProt and NCBInr databases. The identified proteins and their putative functions were discussed further. This was the first study reporting the comparison of petal protein profiles of soybean florets using proteomics tools.展开更多
LEAFY COTYLEDON1(LEC1) is a key regulator of seed maturation, which gives embryos the ability to withstand desiccation. In this study, a novel transcription factor that is homologous to LEC1 in soybean(Glycine max) wa...LEAFY COTYLEDON1(LEC1) is a key regulator of seed maturation, which gives embryos the ability to withstand desiccation. In this study, a novel transcription factor that is homologous to LEC1 in soybean(Glycine max) was isolated from Dongnong 50 by homologous cloning and was named as GmLEC1-A(GenBank accession number: MF681785). Sequence analysis showed that GmLEC1-A contained conserved B regions, which were functional domains of H4 factor. The relative expression level of GmLEC1-A was the highest in seeds of the soybean cultivar Dongnong 50. To verify the function of GmLEC1-A, ectopic expression of Arabidopsis thaliana and over-expression of soybean plants were generated. In Arabidopsis, the expression of GmLEC1-A restored the tolerance of lec1 mutant to seed drying, indicating that GmLEC1-A was a functional homolog of LEC1,and it might regulate the maturation phase of seed development. In soybean, over-expression of GmLEC1-A caused slower growth and lower germination rates as compared to that of wild-type soybeans. Furthermore, over-expression of GmLEC1-A seemed to increase the level of endogenous abscisic acid(ABA) at the germination stage. These results suggested that GmLEC1-A had a function in regulating ABA content at the germination stage.展开更多
Studies have shown that the three subunits of β-conglycinin are the main potential allergens of soybean sensitive patients.And β-conglycinin has adverse effects on nutrition and food processing.So solation and produ...Studies have shown that the three subunits of β-conglycinin are the main potential allergens of soybean sensitive patients.And β-conglycinin has adverse effects on nutrition and food processing.So solation and production of lines with lowerβ-conglycinin content has been the focus of recent soybean breeding projects.Soybean lines with deficiency in one or all subunits of β-congIycinin have been obtained.An effective and rapid system to identify such mutations will facilitate genetic manipulation of the β-conglycinin subunit composition.Here,two segregating F2 populations were developed from crosses between Cgy-1/cgy-1(CC),anα'-lacking line(△α'),and DongNong 47(DN47),a wild-type(Wt)Chinese soybean cultivar with normal globulin components,and Cgy-2/cgy-2(CB),an a-lacking line(△α),and DN47.These populations were used to estimate linkage among the egy-1(conferring α'-null)and cgy-2(α-null)loci and simple sequence repeat(SSR)markers.Seven SSR markers(Sat_038,Satt243,Sat_307,Sat_109,Sat_231,Sat_108 and Sat_190)were determined to co-scgregate with cgy-1,and six SSR markers(Satt650,Satt671,Sat_418,Sat_170,Satt292 and Sat_324)co-segregated with cgy-2.Linkage maps being composed of seven SSR markers and egy-1 locus,and six SSR markers and the cgy-2 locus were then constructed.It assigned that the egy-1 gene to chromosome 10 at a position between Sat_307 and Sat_231,and the cgy-2 gene to chromosome 20 at a position between Satt650 and Satt671.These markers should enable map-based cloning of the egy-1 and cgy-2 genes.For different subunit-deficiency types[α'-null,α-null and(α'+α)-null types],the two sets of SSR markers could also detect of polymorphism between three normal cultivars and seven related mutant lines.The identification of these markers is great significance to the molecular marker-assisted breeding of soybean/9-conglycinin subunits.展开更多
Soybean(Glycine max)is one of the most important food crops and oil crops in the world.According to the role of sucrose transporter in sugar accumulation,GmTST2.1(Glyma.04G000300)and ZmGIF1 of sugar transport related ...Soybean(Glycine max)is one of the most important food crops and oil crops in the world.According to the role of sucrose transporter in sugar accumulation,GmTST2.1(Glyma.04G000300)and ZmGIF1 of sugar transport related genes were separately overexpressed in the soybean cultivar Heihe 43 from the perspective of regulatory source to library relationship in the study.The function of soluble sugar accumulation in grains layed a theoretical foundation for the cultivation of new varieties of high-yield genetically modified soybeans.The results showed that the height and 100-seed weight of the over-expressed GmTST2.1 gene were increased with 7%and 17.7%and the soluble sugar content was increased with 1.575 times as much as that of the wild-type soybean.The overexpressed ZmGIF1 gene was found to be 10%higher than that of plant height,1.8%higher than that of 100-seed weight and larger seed size and 1.3 times higher than that of soluble sugar content.Biological yields were increased in both GmTST2.1 and ZmGIF1 genes.展开更多
The effects of the deficiency of the allergenicα-subunit on soybean amino acid(AA)composition were studied using the cultivar Dongnong 47(DN47)as a genetic background.The near-isogenic line(NIL)NIL-DN47-Δα of DN47,...The effects of the deficiency of the allergenicα-subunit on soybean amino acid(AA)composition were studied using the cultivar Dongnong 47(DN47)as a genetic background.The near-isogenic line(NIL)NIL-DN47-Δα of DN47,with an introgression of theα-null trait allele from the high protein donor parent RiB,was created by marker assisted background selection and used to investigate the AA content and nutritional quality.The contents of crude protein,the total AAs,the total essential amino acids(EAAs)and sulfur-containing(Met and Cys)AAs increased by 4.11%,4.16%,5.20% and 11.96%,respectively in NIL-DN47-Δα compared with DN47.Analyses of the total EAAs(TEAAs)and the EAA index(EAAI)revealed that both parameters in NIL-DN47-Δα were higher than those in DN47.The null-allele of theα-subunit positively affected the AA scores.The quantitative changes in free AAs(FAAs)in the developing seeds of NIL-DN47-Δα and DN47 were compared as of 15 days after flowering(DAF)until maturity.The results showed that the total FAA content in NIL-DN47-Δα was significantly higher than that in the DN47 throughout the late maturation stage(40-60 DAF)of seeds.The high concentration of the FAAs in cgy-2 mutant seeds was a consequence of the high rates of synthesis and/or accumulation of individual FAAs during seed maturation where 25 DAF was an important turning point in the accumulation of the FAAs.The FAA contents of single soybeanα-null,double(α+α′)and triple(α+α′+group I)-null mutant combination lines were investigated.In all of these combinations,introduction of the cgy-2 gene invariably raised the FAA content of mature seeds above that of the DN47.In summary,the enhanced protein quality in cgy-2 mutants resulted from several factors.(1)There was a general increase in the contents of most AAs and FAAs in NIL-DN47-Δα.(2)The induced synthesis of free Arg contributed effectively to the high FAAs of various storage-protein-deficiency mutants.For example,in the S2(null α,group I),the free Arg content was seven times as much as that of DN47,accounting for more than half of the total FAA content in the seed.(3)The increase of sulfur-containing AAs in theα-null type NIL mainly resulted from elevated Met content.These data suggested that the cgy-2 mutation might improve the protein quality of soybean seeds and that lacked of the allergenicα-subunit resulted in increased the FAA content.展开更多
大豆胞囊线虫1号和4号生理小种是黄淮地区的优势小种,ZDD2315是我国特优抗源。本文旨在定位ZDD2315对1号和4号生理小种抗性的QTL。试验以Essex为母本,ZDD2315为父本和轮回亲本,创建了一个包含114个单株的Bc。群体。采用250个SSR标记...大豆胞囊线虫1号和4号生理小种是黄淮地区的优势小种,ZDD2315是我国特优抗源。本文旨在定位ZDD2315对1号和4号生理小种抗性的QTL。试验以Essex为母本,ZDD2315为父本和轮回亲本,创建了一个包含114个单株的Bc。群体。采用250个SSR标记和1个形态标记通过MAPMAKER3.0构建了包含25个连锁群的遗传图谱,覆盖大豆基因组2963.5cM,平均每个连锁群上10.0个标记,标记平均间距11.8cM。采用Win QTL Cartographer Version 2.5复合区间作图法(CIM)检测到3个抗1号小种的QTL;其中rhgR1-1和rhgR1—2位于G连锁群的Sat_210~Sat_168和Sat_168~Sat_141区间,贡献率分别为22.4%和21.8%;rhgR1-3位于D2连锁群的Satt672~Satt413区间,贡献率6.2%;rhgR1-1和rhgR1—3分别与Sat_210和Satt672共分离。5个QTL与抗4号生理小种有关;其中rhgR4—1和rhgR4—-位于G连锁群的Satt275~Sat_210和Sat_168~Sat_141区间,贡献率分别为22.8%和28.9%;rhgR4—3和rhgR4—4位于H连锁群Satt442~Sat401和Sat_334~Satt181区间,贡献率分别为12.0%和10.5%;rhgR4—5位于L连锁群Satt652~Sat_301区间,贡献率5.9%;吨职4—2和rhgR4—5分别与Sat_168和Satt652共分离。不同遗传体系控制ZDD2315对1号和4号小种的抗性。抗1号和4号生理小种的主要QTL位于G连锁群的相近区段,且具有较大贡献率,通过标记辅助选择有可能育成兼抗两小种的品种。展开更多
籽粒百粒重是大豆产量构成三要素之一,百粒重大小决定大豆产量并影响其商品性,百粒重也是大豆遗传改良关键性状。为进一步挖掘籽粒大小相关基因,解析籽粒大小的调控机制。利用碳离子束(Carbon Ion Beam,CIB)辐射野生大豆(ZYD7068),构建...籽粒百粒重是大豆产量构成三要素之一,百粒重大小决定大豆产量并影响其商品性,百粒重也是大豆遗传改良关键性状。为进一步挖掘籽粒大小相关基因,解析籽粒大小的调控机制。利用碳离子束(Carbon Ion Beam,CIB)辐射野生大豆(ZYD7068),构建了200份百粒重变异丰富的野生大豆突变群体。结果表明,群体籽粒百粒重在4.37~16.74 g之间,平均值为7.13 g,突变群体百粒重较野生大豆百粒重提高了4.98倍。对200个突变体采用全基因组测序,共获得184.1亿bp的测序数据,基因组覆盖率68.10%~70.96%。突变主要是单碱基突变(SNP),其中C到T突变占突变总数的40%。对候选SNP基因进行富集分析,突变基因主要富集在Go:0009626(植物超敏反应)、Go:0034050(共生体诱导宿主程序性细胞死亡)、Go:0012501(程序性细胞死亡)、Go:0043680(丝状器)以及Go:0045087(先天免疫反应)等途径。利用全基因组测序获得的SNPs标记,采用MLM模型,对突变群体籽粒百粒重进行全基因组关联分析(Genome-Wide Association GWAS),共检测到71个关联SNPs(-lgP>11),分别位于大豆2、3、5、6、9、10、14、16、18号染色体上,其中5、10号染色体和14号染色体以及18号染色体分别检测到9、21、9、23个SNPs,71个关联SNPs位点涉及33个基因。展开更多
基金Supported by the Ministry of Science and Technology of China(2016YFD0100500)Funding from Harbin Science and Technology Bureau(2016RQYXJ018,2017RAQXJ104)+4 种基金the Key Laboratory of Soybean Biology in the Chinese Ministry of Education,Northeast Agricultural University(SB17A01)National Natural Science Foundation of China(31801386)Heilongjiang Natural Science Foundation(LC2018008)Heilongjiang General Young Innovative Talents Training Plan(UNPYSCT-2018158)Certificate of China Postdoctoral Science Foundation Grant(2018M641839)
文摘Dwarfing is useful to reduce plant height,when breeding high-yielding and non-lodging crops.In this study,a set of natural storage protein subunit-null dwarf mutants of soybean was reported that showed strongly reduced plant stature and deficiency in various 7S and 11S subunits,designated as snd1 mutants.Under normal growth conditions,the snd1 mutants showed a severe dwarf phenotype,with plant height of about 25 cm.Compared with wild-type DN47,the mutant snd1 exhibited no obvious morphological differences at the early stage of development.All the snd1 mutants examined had fewer nodes and shorter than normal internodes;the leaves were similar in shape to normal parents,but were dark-green at the mature stage.The flower size was similar to DN47;however,the flowering period was shorter than in the wild-type.Significant variation was noted for protein content,oil content of the seeds and size of seeds(weight of 100 seeds)among 17 snd1 dwarf lines.Genetic analysis indicated that the dwarfism of snd1 was controlled by a single recessive gene.The snd1 dwarf mutant had markedly different dynamic levels of the endogenous hormones gibberellin(GA),brassinosteroid,indole-3-acetic acid and abscisic acid,at the seedling stage.Exogenous GA3 treatment led to recovery of the plant height phenotype of the snd1 mutant;GA3 at 0.1 mm had the largest effect on enhancing plant height.Using molecular markers,snd1 gene was approximately mapped in an interval of 603 kb between markers Satt166 and Satt561 on chromosome 19.Snd1 mutant provided valuable material for hypoallergenic soybean breeding and the snd1 gene might be a novel gene related to plant height in soybean.
基金Supported by Harbin Science and Technology Bureau(2016RQYXJ018,2017RAQXJ104)the Key Laboratory of Soybean Biology in the Chinese Ministry of Education,Northeast Agricultural University(SB17A01)+3 种基金the National Natural Science Foundation of China(31801386)Heilongjiang Natural Science Foundation(LC2018008)Heilongjiang General Young Innovative Talents Training Plan(UNPYSCT-2018158)Certificate of China Postdoctoral Science Foundation Grant(2018M641839)
文摘A survey of petal-specific proteomes of soybean(Glycine max(L.) Merr[Non-italic].) was conducted comparing protein expression profiles in different petals. Two-dimensional polyacrylamide gel electrophoresis reference maps of protein extracts from standard petals(SP), lateral wings(LW), keel petals(KP), and reproductive organs(RO)(a mixture of stamen and carpel) were obtained. Protein expression in the three petal types was compared using Image Master TM 2 D platinum 6.0 software. This indicated that the proportion of homologous proteins between SP and LW was 59.27%, between SP and KP was 61.48%, and between LW and KP was 60.05%. Within a mass range of 6.5-200.0 ku and pH 4.0-7.0, approximately 590, 646, 544, and 700 protein spots were detected in SP, LW, KP, and RO, respectively. A total of 82 differentially expressed proteins were detected. Sixty-four of these detected spots were differentially expressed and showed more than 2-fold changes in abundance; of these 64 proteins, 26 showed increased expression and 38 showed decreased expression. Among these spots, single organ-specific proteins were also identified.They were ID 49(60.9 ku), ID 45(50.0 ku), and ID 46(40.5 ku) in RO, ID 98(42.0 ku) in SP, and ID 05(29.0 ku) in KP. A total of 14 protein spots from 82 differentially expressed proteins were identified with LC-MS/MS. Further protein identification was conducted using the SwissProt and NCBInr databases. The identified proteins and their putative functions were discussed further. This was the first study reporting the comparison of petal protein profiles of soybean florets using proteomics tools.
基金Supported by the Creative Research Groups of Heilongjiang Province of China(JC2016004)the National Key R&D Program of China(2016YFD0100201-21)+1 种基金Project of Outstanding Academic Leaders in Harbin(2015RQXXJ018)China Agriculture Collaborative Creation Research System of Miscellaneous Grain Crops
文摘LEAFY COTYLEDON1(LEC1) is a key regulator of seed maturation, which gives embryos the ability to withstand desiccation. In this study, a novel transcription factor that is homologous to LEC1 in soybean(Glycine max) was isolated from Dongnong 50 by homologous cloning and was named as GmLEC1-A(GenBank accession number: MF681785). Sequence analysis showed that GmLEC1-A contained conserved B regions, which were functional domains of H4 factor. The relative expression level of GmLEC1-A was the highest in seeds of the soybean cultivar Dongnong 50. To verify the function of GmLEC1-A, ectopic expression of Arabidopsis thaliana and over-expression of soybean plants were generated. In Arabidopsis, the expression of GmLEC1-A restored the tolerance of lec1 mutant to seed drying, indicating that GmLEC1-A was a functional homolog of LEC1,and it might regulate the maturation phase of seed development. In soybean, over-expression of GmLEC1-A caused slower growth and lower germination rates as compared to that of wild-type soybeans. Furthermore, over-expression of GmLEC1-A seemed to increase the level of endogenous abscisic acid(ABA) at the germination stage. These results suggested that GmLEC1-A had a function in regulating ABA content at the germination stage.
基金Supported by the Ministry of Science and Technology of China(2016YFD0I00500)Harbin Science and Technology Bureau(2016RQYXJ018,2017RAQXJ104)+4 种基金the National Natural Science Foundation of China(31801386,31371650 and 31071440)Heilongjiang Natural Science Foundation(LC2018008)Heilongjiang General Young Innovative Talents Training Plan(UNPYSCT-20I8158)Certificate of China Postdoctoral Science Foundation Grant(2018M641839)the Key Laboratory of Soybean Biology in the Chinese Ministry of Education,Northeast Agricultural University(SB17A01)。
文摘Studies have shown that the three subunits of β-conglycinin are the main potential allergens of soybean sensitive patients.And β-conglycinin has adverse effects on nutrition and food processing.So solation and production of lines with lowerβ-conglycinin content has been the focus of recent soybean breeding projects.Soybean lines with deficiency in one or all subunits of β-congIycinin have been obtained.An effective and rapid system to identify such mutations will facilitate genetic manipulation of the β-conglycinin subunit composition.Here,two segregating F2 populations were developed from crosses between Cgy-1/cgy-1(CC),anα'-lacking line(△α'),and DongNong 47(DN47),a wild-type(Wt)Chinese soybean cultivar with normal globulin components,and Cgy-2/cgy-2(CB),an a-lacking line(△α),and DN47.These populations were used to estimate linkage among the egy-1(conferring α'-null)and cgy-2(α-null)loci and simple sequence repeat(SSR)markers.Seven SSR markers(Sat_038,Satt243,Sat_307,Sat_109,Sat_231,Sat_108 and Sat_190)were determined to co-scgregate with cgy-1,and six SSR markers(Satt650,Satt671,Sat_418,Sat_170,Satt292 and Sat_324)co-segregated with cgy-2.Linkage maps being composed of seven SSR markers and egy-1 locus,and six SSR markers and the cgy-2 locus were then constructed.It assigned that the egy-1 gene to chromosome 10 at a position between Sat_307 and Sat_231,and the cgy-2 gene to chromosome 20 at a position between Satt650 and Satt671.These markers should enable map-based cloning of the egy-1 and cgy-2 genes.For different subunit-deficiency types[α'-null,α-null and(α'+α)-null types],the two sets of SSR markers could also detect of polymorphism between three normal cultivars and seven related mutant lines.The identification of these markers is great significance to the molecular marker-assisted breeding of soybean/9-conglycinin subunits.
基金Supported by Heilongjiang Provincial Project(Topic JC2018007,GX17B002,C2018016,GJ2018GJ0098)Chinese National Natural Science Foundation(31671717)+1 种基金the Postdoctoral Fund in Heilongjiang Province(LBH-Z15017,LBH-Q17015)the National Project(CARS-04-PS04)。
文摘Soybean(Glycine max)is one of the most important food crops and oil crops in the world.According to the role of sucrose transporter in sugar accumulation,GmTST2.1(Glyma.04G000300)and ZmGIF1 of sugar transport related genes were separately overexpressed in the soybean cultivar Heihe 43 from the perspective of regulatory source to library relationship in the study.The function of soluble sugar accumulation in grains layed a theoretical foundation for the cultivation of new varieties of high-yield genetically modified soybeans.The results showed that the height and 100-seed weight of the over-expressed GmTST2.1 gene were increased with 7%and 17.7%and the soluble sugar content was increased with 1.575 times as much as that of the wild-type soybean.The overexpressed ZmGIF1 gene was found to be 10%higher than that of plant height,1.8%higher than that of 100-seed weight and larger seed size and 1.3 times higher than that of soluble sugar content.Biological yields were increased in both GmTST2.1 and ZmGIF1 genes.
基金Support by the National Natural Science Foundation of China(31371650,31071440)Northeast Agricultural University Innovation Foundation For Postgraduates(yjscx4042)。
文摘The effects of the deficiency of the allergenicα-subunit on soybean amino acid(AA)composition were studied using the cultivar Dongnong 47(DN47)as a genetic background.The near-isogenic line(NIL)NIL-DN47-Δα of DN47,with an introgression of theα-null trait allele from the high protein donor parent RiB,was created by marker assisted background selection and used to investigate the AA content and nutritional quality.The contents of crude protein,the total AAs,the total essential amino acids(EAAs)and sulfur-containing(Met and Cys)AAs increased by 4.11%,4.16%,5.20% and 11.96%,respectively in NIL-DN47-Δα compared with DN47.Analyses of the total EAAs(TEAAs)and the EAA index(EAAI)revealed that both parameters in NIL-DN47-Δα were higher than those in DN47.The null-allele of theα-subunit positively affected the AA scores.The quantitative changes in free AAs(FAAs)in the developing seeds of NIL-DN47-Δα and DN47 were compared as of 15 days after flowering(DAF)until maturity.The results showed that the total FAA content in NIL-DN47-Δα was significantly higher than that in the DN47 throughout the late maturation stage(40-60 DAF)of seeds.The high concentration of the FAAs in cgy-2 mutant seeds was a consequence of the high rates of synthesis and/or accumulation of individual FAAs during seed maturation where 25 DAF was an important turning point in the accumulation of the FAAs.The FAA contents of single soybeanα-null,double(α+α′)and triple(α+α′+group I)-null mutant combination lines were investigated.In all of these combinations,introduction of the cgy-2 gene invariably raised the FAA content of mature seeds above that of the DN47.In summary,the enhanced protein quality in cgy-2 mutants resulted from several factors.(1)There was a general increase in the contents of most AAs and FAAs in NIL-DN47-Δα.(2)The induced synthesis of free Arg contributed effectively to the high FAAs of various storage-protein-deficiency mutants.For example,in the S2(null α,group I),the free Arg content was seven times as much as that of DN47,accounting for more than half of the total FAA content in the seed.(3)The increase of sulfur-containing AAs in theα-null type NIL mainly resulted from elevated Met content.These data suggested that the cgy-2 mutation might improve the protein quality of soybean seeds and that lacked of the allergenicα-subunit resulted in increased the FAA content.
文摘大豆胞囊线虫1号和4号生理小种是黄淮地区的优势小种,ZDD2315是我国特优抗源。本文旨在定位ZDD2315对1号和4号生理小种抗性的QTL。试验以Essex为母本,ZDD2315为父本和轮回亲本,创建了一个包含114个单株的Bc。群体。采用250个SSR标记和1个形态标记通过MAPMAKER3.0构建了包含25个连锁群的遗传图谱,覆盖大豆基因组2963.5cM,平均每个连锁群上10.0个标记,标记平均间距11.8cM。采用Win QTL Cartographer Version 2.5复合区间作图法(CIM)检测到3个抗1号小种的QTL;其中rhgR1-1和rhgR1—2位于G连锁群的Sat_210~Sat_168和Sat_168~Sat_141区间,贡献率分别为22.4%和21.8%;rhgR1-3位于D2连锁群的Satt672~Satt413区间,贡献率6.2%;rhgR1-1和rhgR1—3分别与Sat_210和Satt672共分离。5个QTL与抗4号生理小种有关;其中rhgR4—1和rhgR4—-位于G连锁群的Satt275~Sat_210和Sat_168~Sat_141区间,贡献率分别为22.8%和28.9%;rhgR4—3和rhgR4—4位于H连锁群Satt442~Sat401和Sat_334~Satt181区间,贡献率分别为12.0%和10.5%;rhgR4—5位于L连锁群Satt652~Sat_301区间,贡献率5.9%;吨职4—2和rhgR4—5分别与Sat_168和Satt652共分离。不同遗传体系控制ZDD2315对1号和4号小种的抗性。抗1号和4号生理小种的主要QTL位于G连锁群的相近区段,且具有较大贡献率,通过标记辅助选择有可能育成兼抗两小种的品种。
文摘籽粒百粒重是大豆产量构成三要素之一,百粒重大小决定大豆产量并影响其商品性,百粒重也是大豆遗传改良关键性状。为进一步挖掘籽粒大小相关基因,解析籽粒大小的调控机制。利用碳离子束(Carbon Ion Beam,CIB)辐射野生大豆(ZYD7068),构建了200份百粒重变异丰富的野生大豆突变群体。结果表明,群体籽粒百粒重在4.37~16.74 g之间,平均值为7.13 g,突变群体百粒重较野生大豆百粒重提高了4.98倍。对200个突变体采用全基因组测序,共获得184.1亿bp的测序数据,基因组覆盖率68.10%~70.96%。突变主要是单碱基突变(SNP),其中C到T突变占突变总数的40%。对候选SNP基因进行富集分析,突变基因主要富集在Go:0009626(植物超敏反应)、Go:0034050(共生体诱导宿主程序性细胞死亡)、Go:0012501(程序性细胞死亡)、Go:0043680(丝状器)以及Go:0045087(先天免疫反应)等途径。利用全基因组测序获得的SNPs标记,采用MLM模型,对突变群体籽粒百粒重进行全基因组关联分析(Genome-Wide Association GWAS),共检测到71个关联SNPs(-lgP>11),分别位于大豆2、3、5、6、9、10、14、16、18号染色体上,其中5、10号染色体和14号染色体以及18号染色体分别检测到9、21、9、23个SNPs,71个关联SNPs位点涉及33个基因。