期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
1
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
Sorting radar signal from symmetry clustering perspective 被引量:13
2
作者 Mohaned Giess Shokrallah Ahmed Bin Tang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期690-696,共7页
The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with i... The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm. 展开更多
关键词 sorting radar pulse SYMMETRY alternative fuzzy c-means noise missing pulse
在线阅读 下载PDF
Pulse-to-pulse periodic signal sorting features and feature extraction in radar emitter pulse sequences 被引量:5
3
作者 Qiang Guo Zhenshen Qu Changhong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期382-389,共8页
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch... A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting. 展开更多
关键词 signal sorting fractal geometry Hilbert-Huang transform(HHT) G feature extraction.
在线阅读 下载PDF
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation 被引量:4
4
作者 GAO Hong-yuan CAO Jin-long 《Journal of Central South University》 SCIE EI CAS 2013年第7期1878-1888,共11页
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed... In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO. 展开更多
关键词 cognitive radio spectrum allocation multi-objective optimization non-dominated sorting quantum particle swarmoptimization benchmark function
在线阅读 下载PDF
Efficient hybrid neural network for spike sorting
5
作者 Hongge Li Pan Yu Tongsheng Xia 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期157-164,共8页
Artificial neural network has been used successfully to develope the automatic spike extraction. In order to address some of the problems before the wireless transmission of the implantable chip, the automatic spike s... Artificial neural network has been used successfully to develope the automatic spike extraction. In order to address some of the problems before the wireless transmission of the implantable chip, the automatic spike sorting method with low complexity and high efficiency is proposed based on the hybrid neural network with the principal component analysis network (PCAN) and normal boundary response (NBR) self-organizing mapping (SOM) net- work classifier. An automatic PCAN technique is used to reduce the dimension and eliminate the correlation of the spike signal. The NBR-SOM network performs the spike sorting challenge and improves the classification performance. The experimental results show that based on the hybrid neural network, the spike sorting method achieves the accuracy above 97.91% with signals contain- ing five classes. The proposed NBR-SOM network classifier is to further improve the stability and effectiveness of the classification system. 展开更多
关键词 neural network spike sorting implantable microsys-tern.
在线阅读 下载PDF
Multi-objective optimization framework in the modeling of belief rule-based systems with interpretability-accuracy trade-off
6
作者 YOU Yaqian SUN Jianbin +1 位作者 TAN Yuejin JIANG Jiang 《Journal of Systems Engineering and Electronics》 2025年第2期423-435,共13页
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b... The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off. 展开更多
关键词 belief rule-based(BRB)systems INTERPRETABILITY multi-objective optimization nondominated sorting genetic algo-rithm II(NSGA-II) pipeline leakage detection.
在线阅读 下载PDF
SORT1在胃癌组织中的表达及其对胃癌细胞生物学的影响
7
作者 肖林雨 段婷 +3 位作者 夏勇生 陈悦 闫兴洲 胡建国 《中国医学科学院学报》 北大核心 2025年第3期343-353,共11页
目的探讨SORT1在胃癌组织中的表达情况,分析其与患者临床预后的关系以及参与胃癌进展的途径及机制。方法采用基因表达谱交互分析数据库、Western blot和免疫组织化学染色预测并分析SORT1在胃癌及癌旁组织中的表达情况。收集2015年4月至2... 目的探讨SORT1在胃癌组织中的表达情况,分析其与患者临床预后的关系以及参与胃癌进展的途径及机制。方法采用基因表达谱交互分析数据库、Western blot和免疫组织化学染色预测并分析SORT1在胃癌及癌旁组织中的表达情况。收集2015年4月至2017年4月蚌埠医科大学第一附属医院行胃癌根治术的109例患者的临床病例资料,分析SORT1与患者临床病理参数以及预后的关系。采用CCK-8法和克隆形成实验检测胃癌细胞的增殖情况,细胞划痕实验和Transwell实验检测胃癌细胞的迁移及侵袭能力,Western blot检测胃癌细胞上皮间质转化(EMT)过程中相关蛋白表达,并进一步分析SORT1调控胃癌细胞EMT的分子机制。结果Western blot和免疫组织化学染色结果显示,SORT1在胃癌组织中呈高表达(P=0.003,P<0.001),且与肿瘤的恶性进展呈正相关(P均<0.05);Kaplan-Meier生存分析显示,SORT1高表达患者的术后生存期明显缩短(P<0.001);Cox回归模型显示,SORT1表达是影响胃癌患者术后5年生存率的独立危险因素(P<0.001)。上调SORT1表达显著促进胃癌细胞的增殖、迁移、侵袭以及EMT过程(P均<0.05),而下调SORT1结果则相反(P均<0.05)。Western blot结果显示,高表达SORT1显著促进β-连环蛋白、细胞周期蛋白D1及c-Myc的蛋白表达(P均<0.05),且体外使用Wnt/β-连环蛋白通路抑制剂(XAV939)能够明显抑制高表达SORT1导致的胃癌细胞EMT能力的增强(P均<0.05)。结论SORT1在胃癌中高表达且影响患者术后生存期,其参与胃癌细胞的增殖、迁移和侵袭,并可能通过激活Wnt/β-连环蛋白通路促进胃癌细胞EMT过程。 展开更多
关键词 胃癌 SORT1 预后 上皮间质转化 Wnt/β-连环蛋白通路
在线阅读 下载PDF
基于视频和BCE-YOLO模型的奶牛采食行为检测 被引量:1
8
作者 张立印 张姬 +4 位作者 杨庆璐 李玉道 于镇伟 田富洋 于素芳 《华南农业大学学报》 CAS CSCD 北大核心 2024年第5期782-792,共11页
【目的】动物采食行为是一个重要的动物福利评价指标,本研究旨在解决复杂饲养环境下奶牛采食行为识别精度差、特征提取不充分的问题,实现对奶牛采食行为的自动监控。【方法】本文提出了一种基于改进BCEYOLO模型的识别方法,该方法通过添... 【目的】动物采食行为是一个重要的动物福利评价指标,本研究旨在解决复杂饲养环境下奶牛采食行为识别精度差、特征提取不充分的问题,实现对奶牛采食行为的自动监控。【方法】本文提出了一种基于改进BCEYOLO模型的识别方法,该方法通过添加BiFormer、CoT、EMA 3个增强模块,提高YOLOv8模型特征提取的能力,进一步与优于Staple、SiameseRPN算法的Deep SORT算法结合,实现对奶牛采食时头部轨迹的跟踪。在奶牛采食过程的俯视和正视视频中提取11288张图像,按照6∶1比例分为训练集和测试集,构建采食数据集。【结果】改进的BCE-YOLO模型在前方和上方拍摄的数据集上精确度分别为77.73%、76.32%,召回率分别为82.57%、86.33%,平均精确度均值分别为83.70%、76.81%;相较于YOLOv8模型,整体性能提升6~8个百分点。Deep SORT算法相比于Staple、SiameseRPN算法,综合性能提高1~4个百分点;并且改进的BCE-YOLO模型与Deep SORT目标跟踪算法结合良好,能对奶牛采食行为进行准确跟踪且有效地抑制了奶牛ID(Identity document)的变更。【结论】本文提出的方法能有效解决复杂饲养环境下奶牛采食行为识别精度差、特征提取不充分的问题,为智能畜牧与精确养殖提供重要参考。 展开更多
关键词 奶牛 采食行为识别 优化YOLOv8模型 Deep SORT
在线阅读 下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用 被引量:2
9
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
在线阅读 下载PDF
基于改进Faster RCNN的茶叶叶部病害识别 被引量:9
10
作者 姜晟 曹亚芃 +3 位作者 刘梓伊 赵帅 张振宇 王卫星 《华中农业大学学报》 CAS CSCD 北大核心 2024年第5期41-50,共10页
针对茶园复杂背景下茶叶叶部病害识别较为困难的问题,提出一种基于改进Faster RCNN算法的茶叶叶部病害识别方法。通过对优化区域建议框的特征提取网络VGG-16、MobileNetV2和ResNet50进行比较,选择识别效果较好的ResNet50作为骨干网络,... 针对茶园复杂背景下茶叶叶部病害识别较为困难的问题,提出一种基于改进Faster RCNN算法的茶叶叶部病害识别方法。通过对优化区域建议框的特征提取网络VGG-16、MobileNetV2和ResNet50进行比较,选择识别效果较好的ResNet50作为骨干网络,增加模型在茶园复杂背景下对茶叶叶部病害特征的提取能力;融入特征金字塔网络(feature pyramid network,FPN)改善小目标漏检问题和病斑的多尺度问题;采用Rank&Sort(RS)Loss函数代替原Faster RCNN中的损失函数,缓解样本分布不均给模型带来的性能影响,进一步提高检测精度。结果显示:改进模型平均精度均值PmA为88.06%,检测速度为19.1帧/s,对藻斑病、白星病、炭疽病、煤烟病识别平均精度分别为75.54%、86.84%、90.42%、99.45%,比Faster RCNN算法分别提高40.98、44.16、13.9和2.43百分点。以上结果表明,基于改进Faster RCNN算法的茶叶叶部病害识别方法能够弱化茶园复杂背景的干扰,准确识别茶园复杂背景下茶叶叶部病害目标。 展开更多
关键词 目标检测 茶叶叶部病害 FPN网络 Rank and Sort Loss 区域建议网络
在线阅读 下载PDF
基于SORT算法的图像轨迹跟踪混合控制方法 被引量:2
11
作者 杜磊 《现代电子技术》 北大核心 2024年第13期32-35,共4页
当目标物体被其他物体部分或完全遮挡时,目标的有效特征点数量会逐渐减少,跟踪器无法继续准确地锁定目标,导致目标轨迹中断。为此,文中研究基于SORT算法的图像轨迹跟踪混合控制方法。选取FCOS算法,利用特征金字塔结构,依据检测头层输出... 当目标物体被其他物体部分或完全遮挡时,目标的有效特征点数量会逐渐减少,跟踪器无法继续准确地锁定目标,导致目标轨迹中断。为此,文中研究基于SORT算法的图像轨迹跟踪混合控制方法。选取FCOS算法,利用特征金字塔结构,依据检测头层输出的目标分类得分、位置回归结果以及中心度检测图像目标。将目标检测结果作为卡尔曼滤波器的输入,利用离散控制过程系统描述视频图像中的目标运动状态,预测目标轨迹。利用SORT算法控制图像目标检测结果与目标轨迹预测结果进行级联匹配与IoU匹配,输出匹配成功的目标,即图像目标轨迹跟踪结果。实验结果表明,该方法可有效地跟踪视频图像目标轨迹,未出现ID变更情况,轨迹中断占比低于0.2%。 展开更多
关键词 SORT算法 图像轨迹跟踪 混合控制方法 FCOS算法 卡尔曼滤波器 级联匹配
在线阅读 下载PDF
考虑交货期的双资源柔性作业车间节能调度 被引量:10
12
作者 张洪亮 徐静茹 +1 位作者 谈波 徐公杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期734-746,共13页
为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sor... 为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithmⅡ,INSGA-Ⅱ)进行求解。针对所优化的目标,设计了一种三阶段解码方法以获得高质量的可行解;利用动态自适应交叉和变异算子以获得更多优良个体;改进拥挤距离以获得收敛性和分布性更优的种群。将INSGA-Ⅱ与多种多目标优化算法进行对比分析,实验结果表明所提算法可行且有效。 展开更多
关键词 双资源约束 柔性作业车间 提前/拖期惩罚 能耗 INSGA-Ⅱ(improved non-dominated sorting genetic algorithmⅡ)
在线阅读 下载PDF
基于混合遗传蚁群算法的多目标FJSP问题研究 被引量:5
13
作者 赵小惠 卫艳芳 +3 位作者 赵雯 胡胜 王凯峰 倪奕棋 《组合机床与自动化加工技术》 北大核心 2023年第1期188-192,共5页
针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初... 针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初始信息素分布;其次,根据提出的自适应伪随机比例规则和改进的信息素更新规则来优化蚂蚁的遍历过程;最后,通过邻域搜索,扩大蚂蚁的搜索空间,从而提高解集的多样性。通过Kacem和BRdata算例进行实验验证,证明混合遗传蚁群算法具有更高的求解效率和更好解集多样性。 展开更多
关键词 柔性作业车间调度 多目标优化 NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ) 蚁群算法
在线阅读 下载PDF
基于分布式渲染架构的远程可视化研究 被引量:13
14
作者 郑利平 陈斌 +3 位作者 王文平 刘晓平 曹力 邝铮峥 《计算机研究与发展》 EI CSCD 北大核心 2012年第7期1438-1449,共12页
互联网带宽的增长催生了远程可视化,它有着更好的分享性、移动性和方便性.针对大规模数据的远程可视化问题,提出了一种基于Sort-Last的分布式渲染架构,给出了基于GPU的融合、抗锯齿等算法.该架构用于远程可视化的服务器端,包括渲染节点... 互联网带宽的增长催生了远程可视化,它有着更好的分享性、移动性和方便性.针对大规模数据的远程可视化问题,提出了一种基于Sort-Last的分布式渲染架构,给出了基于GPU的融合、抗锯齿等算法.该架构用于远程可视化的服务器端,包括渲染节点、融合节点和任务节点等3层结构,具有良好的可扩展性.基于此,实现了一个远程可视化系统Waterman,提供基于Internet的高精地形渲染和海洋排放口污水扩散可视化服务,并给出了详细的设计方法和技术细节,包括基于Raycasting的地形渲染算法、基于陆地掩蔽(mask)方法的海面渲染技术和基于图片、网格模型的客户端混合实现技术等.最后对该架构和系统进行了性能测试和分析.提出的方法实用、鲁棒、扩展性好,可为同类系统设计提供很好的参考. 展开更多
关键词 分布式渲染 并行渲染 远程可视化 地形渲染 Sort—Last
在线阅读 下载PDF
利用无人机航拍视频结合YOLOv3模型和SORT算法统计云杉数量 被引量:8
15
作者 陈锋军 朱学岩 +3 位作者 周文静 郑一力 顾梦梦 赵燕东 《农业工程学报》 EI CAS CSCD 北大核心 2021年第20期81-89,共9页
准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Loo... 准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Look Once v3,YOLOv3)和SORT(Simple Online and Realtime Tracking,SORT)的云杉数量统计方法。主要内容包括数据采集、YOLOv3检测模型构建、SORT跟踪算法和越线计数算法设计。以平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)、均方根误差(Root Mean Square Error,RMSE)和帧率(Frame Rate,FR)为评价指标,该方法对测试集中对应6个不同试验地块的视频内云杉进行数量统计的平均计数准确率MCA为92.30%,平均绝对误差MAE为72,均方根误差RMSE为98.85,帧率FR 11.5帧/s。试验结果表明该方法能够快速准确统计完整地块的云杉数量。相比SSD+SORT算法,该方法在4项评价指标中优势显著,平均计数准确率MCA高12.36个百分点,帧率FR高7.8帧/s,平均绝对误差MAE和均方根误差RMSE分别降低125.83和173.78。对比Faster R-CNN+SORT算法,该方法在保证准确率的基础上更加快速,平均计数准确率MCA仅降低1.33个百分点,但帧率FR提高了10.1帧/s。该研究从无人机航拍视频的角度为解决完整地块的苗木数量统计问题做出了有效探索。 展开更多
关键词 无人机 模型 算法 云杉 数量统计 YOLOv3 SORT
在线阅读 下载PDF
一种基于OGRE图形引擎的实时分布式渲染系统 被引量:7
16
作者 孙益辉 陈福民 王海峰 《计算机工程与应用》 CSCD 北大核心 2008年第31期102-103,111,共3页
虚拟现实的实时交互得到了越来越广泛地应用,实时分布式渲染有效地解决了普通PC机渲染的时间瓶颈问题,提高了系统实时渲染性能和输出分辨率。在对分布式渲染原理研究分析的基础上,依据设计模式的思想,设计了一种基于Sort-First结构的实... 虚拟现实的实时交互得到了越来越广泛地应用,实时分布式渲染有效地解决了普通PC机渲染的时间瓶颈问题,提高了系统实时渲染性能和输出分辨率。在对分布式渲染原理研究分析的基础上,依据设计模式的思想,设计了一种基于Sort-First结构的实时分布式渲染框架和同步机制,并在实践中应用OGRE图形引擎实现了该系统。 展开更多
关键词 分布式渲染 Sort—First 同步 OGRE
在线阅读 下载PDF
基于头部图像特征的草原羊自动计数方法 被引量:8
17
作者 李琦 尚绛岚 李宝山 《中国测试》 CAS 北大核心 2020年第11期20-24,共5页
为解决当前国内牧场羊群数量由人工统计完成导致的人工成本高、统计效率低的问题,实验采用YOLOv3目标检测算法与Deep SORT跟踪算法相结合,基于双线计数法实现草原羊的自动计数。结果表明:针对标定的羊群头部数据集,在原始YOLOv3检测算... 为解决当前国内牧场羊群数量由人工统计完成导致的人工成本高、统计效率低的问题,实验采用YOLOv3目标检测算法与Deep SORT跟踪算法相结合,基于双线计数法实现草原羊的自动计数。结果表明:针对标定的羊群头部数据集,在原始YOLOv3检测算法的基础上,采用K-means聚类方法进行聚类分析,改进YOLOv3检测算法的初始候选框,在测试集上检测准确度为90.12%,较原始YOLOv3提高8.57%;利用YOLOv3+Deep SORT的跟踪方法对草原羊头部目标进行跟踪,与Deep SORT跟踪算法的结果进行对比,跟踪成功率提高11.77%,中心点误差降低1.43%。实验在内蒙古苏尼特左旗合作牧场对草原羊进行计数并与真实值比较,计数精度较高,满足实验要求。说明基于头部图像特征的草原羊自动计数方法可以作为一种解决方案进行推广应用。 展开更多
关键词 目标检测 YOLOv3 目标跟踪 Deep SORT 羊群计数
在线阅读 下载PDF
基于YOLO v5s和改进SORT算法的黑水虻幼虫计数方法 被引量:8
18
作者 赵新龙 顾臻奇 李军 《农业机械学报》 EI CAS CSCD 北大核心 2023年第7期339-346,共8页
目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难... 目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难等问题。针对以上问题,本文提出了一种改进SORT算法,通过改进卡尔曼滤波模型的方式提升目标追踪算法的快速性和准确性,提升了计数的精度。另外,针对黑水虻幼虫目标识别过程中幼虫性状的多样性和混料导致的复杂背景问题,本文通过实验对比多种深度学习网络性能选定YOLO v5s算法提取图像多维度特征,提升了目标识别精度。实验结果表明:在划线计数方面,本文提出的改进SORT算法与原模型相比,平均精度从91.36%提升到95.55%,提升4.19个百分点,通过仿真和实际应用,证明了本文模型的有效性;在目标识别方面,使用YOLO v5s模型在训练集上帧率为156 f/s,mAP@0.5为99.10%,精度为90.11%,召回率为99.22%,综合性能优于其他网络。 展开更多
关键词 黑水虻幼虫 目标识别 目标追踪 划线计数 YOLO v5s SORT算法
在线阅读 下载PDF
基于改进Faster R-CNN和Deep Sort的棉铃跟踪计数 被引量:6
19
作者 黄成龙 张忠福 +3 位作者 华向东 杨俊雅 柯宇曦 杨万能 《农业机械学报》 EI CAS CSCD 北大核心 2023年第6期205-213,共9页
棉铃作为棉花重要的产量与品质器官,单株铃数、铃长、铃宽等相关表型性状一直是棉花育种的重要研究内容。为解决由于叶片遮挡导致传统静态图像检测方法无法获取全部棉铃数量的问题,提出了一种以改进Faster R-CNN、Deep Sort和撞线匹配... 棉铃作为棉花重要的产量与品质器官,单株铃数、铃长、铃宽等相关表型性状一直是棉花育种的重要研究内容。为解决由于叶片遮挡导致传统静态图像检测方法无法获取全部棉铃数量的问题,提出了一种以改进Faster R-CNN、Deep Sort和撞线匹配机制为主要算法框架的棉铃跟踪计数方法,以实现在动态视频输入情况下对盆栽棉花棉铃的数量统计。采用基于特征金字塔的Faster R-CNN目标检测网络,融合导向锚框、Soft NMS等网络优化方法,实现对视频中棉铃目标更精确的定位;使用Deep Sort跟踪器通过卡尔曼滤波和深度特征匹配实现前后帧同一目标的相互关联,并为目标进行ID匹配;针对跟踪过程ID跳变问题设计了掩模撞线机制以实现动态旋转视频棉铃数量统计。试验结果表明:改进Faster R-CNN目标检测结果最优,平均测量精度mAP75和F1值分别为0.97和0.96,较改进前分别提高0.02和0.01;改进Faster R-CNN和Deep Sort跟踪结果最优,多目标跟踪精度为0.91,较Tracktor和Sort算法分别提高0.02和0.15;单株铃数计数结果决定系数、均方误差、平均绝对误差和平均绝对百分比误差分别为0.96、1.19、0.81和5.92%,与人工值具有较高一致性,开发的棉铃跟踪软件可以实现对棉铃的有效跟踪和计数。 展开更多
关键词 棉铃计数 目标检测 目标跟踪 Faster R-CNN Deep Sort
在线阅读 下载PDF
基于改进YOLOv3的街道行人检测与跟踪方法 被引量:14
20
作者 武明虎 黄咏曦 王娟 《科学技术与工程》 北大核心 2021年第17期7230-7236,共7页
针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失... 针对室外街道的行人检测与跟踪,提出一种改进YOLOv3与简单在线实时跟踪(simple online and real-time tracking,SORT)算法相结合的检测及跟踪方法。首先,引入距离和比例交并比(distance and proportional-IOU,DPIOU)损失,将原有的损失函数中的均方误差(mean square error,MSE)部分进行变化,从而得到更精确的检测框;其次,将网络结构中的RestNet进行优化,改变下采样区域,增加池化层,进而减少特征信息的丢失;最后将检测结果输入SORT算法进行建模和匹配。实验结果表明,在室外街道的场景下,改进的算法与YOLOv3相比较,损失值收敛更快,平均准确率高出4.85%,跟踪准确率上升3.4%,同时,模型的速度有所提高,最快可达14.39 FPS。 展开更多
关键词 行人检测 目标跟踪 YOLOv3 简单在线实时跟踪(simple online and real-time tracking SORT)算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部