铁是植物生长的重要微量营养元素之一,土壤有效铁含量对林地环境起着重要的影响,利用土壤光谱预测技术获取土壤有效铁含量信息具有重要意义。而要通过土壤光谱直接预测土壤有效铁含量是难以实现的,因此提出利用土壤有机质含量与有效铁...铁是植物生长的重要微量营养元素之一,土壤有效铁含量对林地环境起着重要的影响,利用土壤光谱预测技术获取土壤有效铁含量信息具有重要意义。而要通过土壤光谱直接预测土壤有效铁含量是难以实现的,因此提出利用土壤有机质含量与有效铁含量之间的相关性,探讨间接估算土壤有效铁含量的可行性。以庐山森林土壤样本为研究对象,研究基于偏最小二乘回归(PLSR)和径向基函数(RBF)神经网络的组合模型预测土壤有机质含量的适用性,并且通过构建有机质含量与有效铁含量的二项式线性模型,对土壤有效铁含量进行间接反演,探讨不同权重下的最优组合模型。结果表明,组合模型的预测效果优于偏最小二乘回归和RBF神经网络单个模型,并且熵值组合为最优组合模型,其中,土壤有机质的反演模型验证的决定系数(R^2)为0.81,均方根误差(RMSE_p)为11.54 g kg^(-1),测定值标准差与标准预测误差的比值(RPD)为2.18;有效铁的间接反演模型R^2为0.70,RMSE_p为21.60 mg kg^(-1),RPD为1.77。通过土壤有机质构建土壤有效铁含量的光谱反演间接模型,在光谱反演模型中,组合模型能较大限度地利用各种预测样本信息,能有效减少单个预测模型中随机因素的影响,增强预测稳定性,提高模型的预测能力。因此,组合模型可对土壤有机质含量的光谱预测及土壤有效铁的间接预测发挥更好的作用。展开更多
使用高光谱仪ASD Field Spec在波长范围400~1000 nm内采集有机质含量不同的土壤反射光谱数据并作对数变换处理;之后在不同尺度的微分窗口下求取其一阶导数(一阶导数光谱)并进行小波阈值去噪;从一阶导数光谱中提取特征参数表征有机质含...使用高光谱仪ASD Field Spec在波长范围400~1000 nm内采集有机质含量不同的土壤反射光谱数据并作对数变换处理;之后在不同尺度的微分窗口下求取其一阶导数(一阶导数光谱)并进行小波阈值去噪;从一阶导数光谱中提取特征参数表征有机质含量变化.结果表明,微分窗口尺度w=1~5时,土壤一阶导数光谱中含有大量噪声,对一阶导数光谱曲线形态和有机质吸收特征的识别造成严重干扰;微分窗口尺度w=6~15时,土壤一阶导数光谱中的噪声得到一定程度的去除,但仍无法准确判别有机质的吸收特征;微分窗口尺度w=16~30时,土壤一阶导数光谱中的噪声被有效去除,其中当w=19时,从一阶导数光谱中提取的特征参数MD1s 9与土壤有机质含量的相关系数为-0.803.MD1s 9能够较为准确地指示有机质含量变化,而且运算简单,易于实现,为在精准农业中采用可见/近红外反射光谱分析技术快速检测土壤有机质提供了新的途径.展开更多
文摘铁是植物生长的重要微量营养元素之一,土壤有效铁含量对林地环境起着重要的影响,利用土壤光谱预测技术获取土壤有效铁含量信息具有重要意义。而要通过土壤光谱直接预测土壤有效铁含量是难以实现的,因此提出利用土壤有机质含量与有效铁含量之间的相关性,探讨间接估算土壤有效铁含量的可行性。以庐山森林土壤样本为研究对象,研究基于偏最小二乘回归(PLSR)和径向基函数(RBF)神经网络的组合模型预测土壤有机质含量的适用性,并且通过构建有机质含量与有效铁含量的二项式线性模型,对土壤有效铁含量进行间接反演,探讨不同权重下的最优组合模型。结果表明,组合模型的预测效果优于偏最小二乘回归和RBF神经网络单个模型,并且熵值组合为最优组合模型,其中,土壤有机质的反演模型验证的决定系数(R^2)为0.81,均方根误差(RMSE_p)为11.54 g kg^(-1),测定值标准差与标准预测误差的比值(RPD)为2.18;有效铁的间接反演模型R^2为0.70,RMSE_p为21.60 mg kg^(-1),RPD为1.77。通过土壤有机质构建土壤有效铁含量的光谱反演间接模型,在光谱反演模型中,组合模型能较大限度地利用各种预测样本信息,能有效减少单个预测模型中随机因素的影响,增强预测稳定性,提高模型的预测能力。因此,组合模型可对土壤有机质含量的光谱预测及土壤有效铁的间接预测发挥更好的作用。