期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Effects of intercropping systems of trees with soybean on soil physicochemical properties in juvenile plantations 被引量:6
1
作者 FAN A-nan CHEN Xiang-wei LI Zhi-min 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第3期226-230,共5页
The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The... The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation. 展开更多
关键词 Intercropping systems soil nutrient content soil physicochemical properties larch/soybean intercropping system ash/soybean intercropping system
在线阅读 下载PDF
Influence of soil microorganisms and physicochemical properties on plant diversity in an arid desert of Western China 被引量:5
2
作者 Xiaodong Yang Yanxin Long +5 位作者 Binoy Sarkar Yan Li Guanghui Lv Arshad Ali Jianjun Yang Yue-E.Cao 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2645-2659,共15页
Soil microorganisms and physicochemical properties are considered the two most influencing factors for maintaining plant diversity.However,the operational mechanisms and which factor is the most influential manipulato... Soil microorganisms and physicochemical properties are considered the two most influencing factors for maintaining plant diversity.However,the operational mechanisms and which factor is the most influential manipulator remain poorly understood.In this study,we examine the collaborative influences of soil physicochemical properties(i.e.,soil water,soil organic matter(SOM),salinity,total phosphorus and nitrogen,pH,soil bulk density and fine root biomass)and soil microorganisms(fungi and bacteria)on plant diversity across two types of tree patches dominated by big and small trees(big trees:height≥7 m and DBH≥60 cm;small trees:height≤4.5 m and DBH≤20 cm)in an arid desert region.Tree patch is consists of a single tree or group of trees and their accompanying shrubs and herbs.It was hypothesized that soil physicochemical properties and microorganisms affect plant diversity but their influence differ.The results show that plant and soil microbial diversity increased with increasing distances from big trees.SOM,salinity,fine root biomass,soil water,total phosphorus and total nitrogen contents decreased with increasing distance from big trees,while pH and soil bulk density did not change.Plant and soil microbial diversity were higher in areas close to big trees compared with small trees,whereas soil physicochemical properties were opposite.The average contribution of soil physicochemical properties(12.2%-13.5%)to plant diversity was higher than microbial diversity(4.8%-6.7%).Salinity had the largest negative affect on plant diversity(24.7%-27.4%).This study suggests that soil fungi constrain plant diversity while bacteria improve it in tree patches.Soil physicochemical properties are the most important factor modulating plant diversity in arid desert tree patches. 展开更多
关键词 Arid ecosystem soil microbial diversity soil physicochemical properties Plant diversity soil salinity
在线阅读 下载PDF
Effect of corylus clusters on the physicochemical properties of soil
3
作者 陈永亮 程国玲 韩世杰 《Journal of Forestry Research》 CAS CSCD 2000年第3期173-176,共4页
Soil sample plots were specified and the soil in layer A0, A1 and AB were collected in Maoershan-Forest Experiment Farm of Northeast Forestry University for study of the effect of corylus clusters on soil in 1999. The... Soil sample plots were specified and the soil in layer A0, A1 and AB were collected in Maoershan-Forest Experiment Farm of Northeast Forestry University for study of the effect of corylus clusters on soil in 1999. The result shows that the pH value, contents of organic matter, total nitrogen, alkali-discomposed nitrogen and total phosphorus under the corylus clusters are higher than that under the non-corylus clusters, except the available phosphorus content. The number of soil granular aggregates or the water stable aggregates under corylus clusters is more than that under the non-corylus clusters. The corylus clusters play an important role in improving the physicochemical properties of the soil, which should be conserved and developed in the forestry production. 展开更多
关键词 Corylus cluster soil physicochemical properties
在线阅读 下载PDF
Effects of three coniferous plantation species on plant-soil feedbacks and soil physical and chemical properties in semiarid mountain ecosystems 被引量:6
4
作者 Chun Han Yongjing Liu +5 位作者 Cankun Zhang Yage Li Tairan Zhou Salman Khan Ning Chen Changming Zhao 《Forest Ecosystems》 SCIE CSCD 2021年第1期22-34,共13页
Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which... Background:Large-scale afforestation can significantly change the ground cover and soil physicochemical properties,especially the soil fertility maintenance and water conservation functions of artificial forests,which are very important in semi-arid mountain ecosystems.However,how different tree species affect soil nutrients and soil physicochemical properties after afforestation,and which is the best plantation species for improving soil fertility and water conservation functions remain largely unknown.Methods:This study investigated the soil nutrient contents of three different plantations(Larix principis-rupprechtii,Picea crassifolia,Pinus tabuliformis),soils and plant-soil feedbacks,as well as the interactions between soil physicochemical properties.Results:The results revealed that the leaves and litter layers strongly influenced soil nutrient availability through biogeochemical processes:P.tabuliformis had higher organic carbon,ratio of organic carbon to total nitrogen(C:N)and organic carbon to total phosphorus(C:P)in the leaves and litter layers than L.principis-rupprechtii or P.crassifolia,suggesting that higher C:N and C:P hindered litter decomposition.As a result,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved soil nutrients and clay components,compared with the P.tabuliformis plantation forest.Furthermore,the L.principis-rupprechtii and P.crassifolia plantation forests significantly improved the soil capacity,soil total porosity,and capillary porosity,decreased soil bulk density,and enhanced water storage capacity,compared with the P.tabuliformis plantation forest.The results of this study showed that,the strong link between plants and soil was tightly coupled to C:N and C:P,and there was a close correlation between soil particle size distribution and soil physicochemical properties.Conclusions:Therefore,our results recommend planting the L.principis-rupprechtii and P.crassifolia as the preferred tree species to enhance the soil fertility and water conservation functions,especially in semi-arid regions mountain forest ecosystems. 展开更多
关键词 PLANTATION C:N:P stoichiometry Plant-soil feedbacks soil physicochemical properties Mountain ecosystems
在线阅读 下载PDF
Coastal afforestation effects on soil properties at Hatiya in Bangladesh 被引量:1
5
作者 K. M. Shaifullah S. M. Sirajul Haque M. Sujauddin Shyamal Karmakar 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第3期243-248,共6页
An exploratory study was conducted in the coastal plantation (12- and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of N... An exploratory study was conducted in the coastal plantation (12- and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12- and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p〈0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g.cm^-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS'cm^-1, 28.06 mg.L^-1, 0.50 mg-L^- 1 11.5 mg-L^-1, 3.30 mg·L^-1 and 2.7 mmol.kg^-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g.cm^-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS.cm^-1, 13.07mg-L^-1, 0.30 mg.L^-1, 1.4 mg.L^-1, 0.30 mmol·kg^-1 and 0.50 mg.L^-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p〈0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands. 展开更多
关键词 coastal afforestation keora plantation soil physicochemical properties afforestation effect soil texture soil base cations Sonneratia apetala BANGLADESH
在线阅读 下载PDF
Coastal afforestation effects on soil properties at Hatiya in Bangladesh
6
作者 K.M.Shaifullah S.M.Sirajul Haque +1 位作者 M.Sujauddin Shyamal Karmakar 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第A3期243-248,287,共7页
An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noak... An exploratory study was conducted in the coastal plantation (12-and 17-year-old Sonneratia apetala) of Char Alim and Char Piya and on their adjacent barren lands at Char Rehania and Char Nurul Islam in Hatiya of Noakhali district, in Bangladesh to determine afforestation effects on soil properties. At soil depths of 0-10, 10-30 and 30-40 cm across three different land strips viz. inland, middle and sea side in 12-and 17-year-old keora (Sonneratia apetala) plantations, soil moisture, particle density, organic matter and C, total N, pH, available P, K, Na, Ca and Mg were significantly (p≤0.05, p≤0.01, p≤0.001) higher, and soil salinity significantly (p≤0.001) lower than that in their adjacent barren lands. Soil moisture, particle density, organic matter and C, total N, pH, soil salinity, available P, K, Na, Ca and Mg of surface soil in Char Alim plantation at inland were 31.09%, 2.24 g·cm-3, 2.41%, 4.14%, 0.58%, 7.07, 0.09 dS·cm-1, 28.06 mg·L-1, 0.50 mg·L-1 11.5 mg·L-1, 3.30 mg·L-1 and 2.7 mmol·kg-1, respectively. Their corresponding values for the same depth and land position at adjacent Char Rehania barren land were 16.69%, 1.25g·cm-3, 0.43%, 0.74%, 0.25%, 6.57, 0.13 dS·cm-1, 13.07mg·L-1, 0.30 mg·L-1, 1.4 mg·L-1, 0.30 mmol·kg-1 and 0.50 mg·L-1, respectively. Soil moisture, particle density, organic matter and C, total N, pH, available P, K and Ca decreased, and soil salinity, available Na and Mg increased from inland towards sea side in the plantations. Although soil texture did not differ in most soil depths between plantation and adjacent barren land, proportion of sand particle was significantly (p≤0.01) lower and silt particle significantly (p≤0.001) in the plantations higher than that in their adjacent barren lands. In the study, evaluation of all the parameters was also done for the other pair of lands. 展开更多
关键词 coastal afforestation keora plantation soil physicochemical properties afforestation effect soil texture soil base cations Sonneratia apetala BANGLADESH
在线阅读 下载PDF
The effects of fire and seasonal variations on soil properties in Juniperus excelsa M.Bieb.stands in the Alborz Mountains,Iran
7
作者 Nasim Bagheri Delijani Alireza Moshki +2 位作者 Mohammad Matinizadeh Hooman Ravanbakhsh Elham Nouri 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1471-1479,共9页
This study was conducted in Juniperus excels a stands on the southern slopes of Iran’s Alborz Mountains,to determine the effects of fire and seasonal variations on soil physicochemical properties and enzyme activitie... This study was conducted in Juniperus excels a stands on the southern slopes of Iran’s Alborz Mountains,to determine the effects of fire and seasonal variations on soil physicochemical properties and enzyme activities.A total of 64 composite soil s amples were randomly collected in the spring and fall from two burned and unburned sites at depths of 0-10 and 10-20 cm.The results of a two-way ANOVA analysis indicate that fire increased the organic carbon(OC),total nitrogen(TN),and available phosphorus(P_(ava)) contents of the soil by 16%,59%,and 53%,respectively.Similarly,when burned sites were compared to unburned sites,the activities of acid phosphatase(ACP) and urease enzymes increased by 73% and 12%,respectively.Nevertheless,fire did not affect soil texture,bulk density(BD),pH,electric conductivity(EC),exchangeable potassium(Kexc),or the activities of alkaline phosphatase(ALP) and dehydrogenase.According to two-way ANOVA results,OC,TN,P_(ava),K_(exc),and EC values were significantly higher in the fall,whereas pH and ALP values were significantly higher in the spring.Additionally,phosphorous and dehydrogenase activity were significantly different in selected soil factors at 0-10 and10-20 cm depths.The interaction of fire,season,and soil depth were significant for phosphorous and urease.Moreover,the activity of ALP correlated well with pH(r=0.68),P(r=-0.74),OC(r=-0.53),and TN(r=-0.37),whereas the activity of ACP correlated significantly with OC(r=0.64) and TN(r=0.71).Two years after the fire,soil properties in J.excels a stands had either improved or remained unaffected,returning to pre-fire levels.Additionally,soil chemical properties varied significantly across sampling seasons,which should be considered when comparing and interpreting soil data in future research. 展开更多
关键词 DEHYDROGENASE Acid&alkaline phosphatases Seasonal variations soil physicochemical properties UREASE
在线阅读 下载PDF
Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China 被引量:11
8
作者 Chan Chen Xi Fang +3 位作者 Wenhua Xiang Pifeng Lei Shuai Ouyang and Yakov Kuzyakov 《Forest Ecosystems》 SCIE CSCD 2020年第3期404-420,共17页
Background: Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about th... Background: Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about the synergistic influence of soil physicochemical properties and vegetation features on vegetation restoration. The aim of this study was to investigate the co-evolution of soil physicochemical properties and vegetation features in the process of vegetation restoration, and to distinguish the primary and secondary relationships between soil and vegetation in their collaborative effects on promoting vegetation restoration in a subtropical area of China.Methods: Soil samples were collected to 40 cm in four distinct plant communities along a restoration gradient from herb(4–5 years), to shrub(11–12 years), to Pinus massoniana coniferous and broadleaved mixed forest(45–46 years), and to evergreen broadleaved forest(old growth forest). Measurements were taken of the soil physicochemical properties and Shannon–Wiener index(SD), diameter at breast height(DBH), height(H), and biomass. Principal component analysis, linear function analysis, and variation partitioning analysis were then performed to prioritize the relative importance of the leading factors affecting vegetation restoration.Results: Soil physicochemical properties and vegetation features showed a significant trend of improvement across the vegetation restoration gradient, reflected mainly in the high response rates of soil organic carbon(SOC)(140.76%), total nitrogen(TN)(222.48%), total phosphorus(TP)(59.54%), alkaline hydrolysis nitrogen(AN)(544.65%),available phosphorus(AP)(53.28%), species diversity(86.3%), biomass(2906.52%), DBH(128.11%), and H(596.97%).The soil properties(pH, SOC, TN, AN, and TP) and vegetation features(biomass, DBH, and H) had a clear coevolutionary relationship over the course of restoration. The synergistic interaction between soil properties and vegetation features had the greatest effect on biomass(55.55%–72.37%), and the soil properties contributed secondarily(3.30%–31.44%). The main impact factors of biomass varied with the restoration periods.Conclusions: In the process of vegetation restoration, soil and vegetation promoted each other. Vegetation restoration was the cumulative result of changes in soil fertility and vegetation features. 展开更多
关键词 Vegetation restoration soil physicochemical properties soil organic carbon Vegetation features Driving factors
在线阅读 下载PDF
Pyrosequencing-based assessment of bacterial community structure in mine soils affected by mining subsidence 被引量:4
9
作者 Li Yuanyuan Chen Longqian +2 位作者 Wen Hongyu Zhou Tianjian Zhang Ting 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期701-706,共6页
Based on the 454 pyrosequencing approach, this research evaluated the influence of coal mining subsi- dence on soil bacterial diversity and community structure in Chinese mining area. In order to characterize the bact... Based on the 454 pyrosequencing approach, this research evaluated the influence of coal mining subsi- dence on soil bacterial diversity and community structure in Chinese mining area. In order to characterize the bacterial community comparatively, this study selected a field experiment site with coal-excavated subsidence soils and an adjacent site with non-disturbed agricultural soils, respectively. The dataset com- prises 24512 sequences that are affiliated to the 7 phylogenetic groups: proteobacteria, actinobacteria, bacteroidetes, gemmatimonadetes, chlorofiexi, nitrospirae and unclassified phylum. Proteobacteria is the largest bacterial phylum in all samples, with a marked shift of the proportions of alpha-, beta-, and gammaproteobacteria. The results show that undisturbed soils are relatively more diverse and rich than subsided soils, and differences in abundances of dominant taxonomic groups between the two soil groups are visible. Compared with the control, soil nutrient contents decline achieves significant level in subsided soils. Correlational analysis showed bacterial diversity indices have significantly positive corre- lation with soil organic matter, total N, total P, and available K. but in negative relation with soil salinity. Ground subsidence noticeably affects the diversity and composition of soil microbial community. Degen- eration of soil fertility and soil salinization inhibits the sole-carbon-source metabolic ability of microbial community, leading to the simplification of advantage species and uneven distribution of microbial spe- cies. This work demonstrates the great potential of pyrosequencing technique in revealing microbial diversity and presents background information of microbial communities of mine subsidence land. 展开更多
关键词 Mining subsidence land soil physicochemical properties 454 pyrosequencing Bacterial diversity
在线阅读 下载PDF
Urban land-use impacts on composition and spatiotemporal variations in abundance and biomass of earthworm community 被引量:3
10
作者 Jihang Li Zhe Zhang +2 位作者 Hong Wang Shaojun Wang Qibo Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期325-331,共7页
Soil fauna can sensitively respond to alterations in soil environment induced by land-use changes.However,little is known about the impact of urban land-use changes on earthworm communities.In this study,three land-us... Soil fauna can sensitively respond to alterations in soil environment induced by land-use changes.However,little is known about the impact of urban land-use changes on earthworm communities.In this study,three land-use types(i.e.,forest,nursery and abandoned lands)were chosen to identify differences in diversity,abundance and biomass of earthworm community in Kunming City.Urban land-use had a pronounced difference in species composition,evenness and diversity of earthworm communities.Forest land had the highest density,biomass and diversity of the earthworm communities.Total abundance was dominated by endogeic species in nursery land(70%)and abandoned land(80%),whereas in the forest land,the earthworm community comprised epigeic,endogeic and anecic species.Temporal changes in earthworm density and biomass were also significantly affected by land-use change.Total density and biomass of earthworms in the forest and nursery lands were highest in September,but highest in the abandoned land in October.The influence of soil physicochemical properties on the earthworm density and biomass also varied with land-use types.Soil temperature significantly affected earthworm density and biomass in the three land-use types.Soil pH was positively correlated with earthworm biomass in the forest land,but negatively associated with earthworm density in the abandoned land.Soil organic matter was positively correlated only with density and biomass of earthworms in the nursery and abandoned lands.Our results suggest that the species composition,abundance and biomass of earthworm communities can be determined by the modification of soil properties associated with urban land-use type. 展开更多
关键词 BIOMASS Density Earthworm community soil physicochemical properties Spatiotemporal dynamics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部