期刊文献+
共找到150,819篇文章
< 1 2 250 >
每页显示 20 50 100
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
1
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
在线阅读 下载PDF
Multidisciplinary and multi-fidelity coupling methods in aircraft engine simulations
2
作者 YANG Xin XIE Pengfu +2 位作者 DONG Xuezhi HE Ai TAN Chunqing 《推进技术》 北大核心 2025年第5期1-12,共12页
To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil... To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency. 展开更多
关键词 AERO-ENGINE Multi-fidelity simulation Overall performance CO-simulation Integrated model Zooming strategy
在线阅读 下载PDF
SolarDesign:An online photovoltaic device simulation and design platform
3
作者 Wei E.I.Sha Xiaoyu Wang +8 位作者 Wenchao Chen Yuhao Fu Lijun Zhang Liang Tian Minshen Lin Shudi Jiao Ting Xu Tiange Sun Dongxue Liu 《Chinese Physics B》 2025年第1期135-141,共7页
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ... Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration. 展开更多
关键词 photovoltaic device simulation silicon solar cells organic and perovskite solar cells multi-physics and circuit simulation
在线阅读 下载PDF
Improving the reliability of classical molecular dynamics simulations in battery electrolyte design
4
作者 Xin He Yujie Zhang +5 位作者 Haomiao Li Min Zhou Wei Wang Ruxing Wang Kai Jiang Kangli Wang 《Journal of Energy Chemistry》 2025年第2期34-41,I0002,共9页
Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for... Explorations into new electrolytes have highlighted the critical impact of solvation structure on battery performance,Classical molecular dynamics(CMD)using semi-empirical force fields has become an essential tool for simulating solvation structures.However,mainstream force fields often lack accuracy in describing strong ion-solvent interactions,causing disparities between CMD simulations and experimental observations.Although some empirical methods have been employed in some of the studies to address this issue,their effectiveness has been limited.Our CMD research,supported by quantum chemical calculations and experimental data,reveals that the solvation structure is influenced not only by the charge model but also by the polarization description.Previous empirical approaches that focused solely on adjusting ion-solvent interaction strengths overlooked the importance of polarization effects.Building on this insight,we propose integrating the Drude polarization model into mainstream force fields and verify its feasibility in carbonate,ether,and nitrile electrolytes.Our experimental results demonstrate that this approach significantly enhances the accuracy of CMD-simulated solvation structures.This work is expected to provide a more reliable CMD method for electrolyte design,shielding researchers from the pitfalls of erroneous simulation outcomes. 展开更多
关键词 ELECTROLYTE Classical molecular dynamics Solvation structure simulations
在线阅读 下载PDF
Magnetohydrodynamic simulation study of impurity radiation-excited and driven tearing mode
5
作者 Yiming ZU Zhiwei MA Yuchen XU 《Plasma Science and Technology》 2025年第3期22-29,共8页
Tearing modes may play an important role in the density limit disruption.The Magnetohydrodynamic(MHD)code CLT with impurity modules is used to study the tearing mode excited and driven by impurity radiation.The impuri... Tearing modes may play an important role in the density limit disruption.The Magnetohydrodynamic(MHD)code CLT with impurity modules is used to study the tearing mode excited and driven by impurity radiation.The impurity radiation can lead to plasma contraction and local enhancement of the current density.When the locally enhanced region of the current density approaches to the resonance surface,the tearing mode can be excited,even if the tearing mode is stable in the initial equilibrium.Through a scan of the initial atomic number(Z)and impurity concentrations,it is found that impurities with different Z values exhibit similar behaviors in the radiation-driven tearing mode.The impurity radiation can drive tearing mode growth through temperature cooling near the resonance surface,and there exists a linear relationship between the temperature perturbation caused by impurity radiation and the linear growth rate of the tearing mode.Additionally,the impurity can promote the growth of magnetic islands through the radiation cooling inside the magnetic island,and there exists a correlation between the initial parameters of impurity and the width of the saturated magnetic island. 展开更多
关键词 impurity radiation tearing mode MHD simulation
在线阅读 下载PDF
Design principles of fluoroether solvents for lithium metal battery electrolytes unveiled by extensive molecular simulation and machine learning
6
作者 Xueying Yuan Xiupeng Chen +2 位作者 Yuanxin Zhou Zhiao Yu Xian Kong 《Journal of Energy Chemistry》 2025年第3期52-62,共11页
Electrolyte engineering with fluoroethers as solvents offers promising potential for high-performance lithium metal batteries.Despite recent progresses achieved in designing and synthesizing novel fluoroether solvents... Electrolyte engineering with fluoroethers as solvents offers promising potential for high-performance lithium metal batteries.Despite recent progresses achieved in designing and synthesizing novel fluoroether solvents,a systematic understanding of how fluorination patterns impact electrolyte performance is still lacking.We investigate the effects of fluorination patterns on properties of electrolytes using fluorinated 1,2-diethoxyethane(FDEE)as single solvents.By employing quantum calculations,molecular dynamics simulations,and interpretable machine learning,we establish significant correlations between fluorination patterns and electrolyte properties.Higher fluorination levels enhance FDEE stability but decrease conductivity.The symmetry of fluorination sites is critical for stability and viscosity,while exerting minimal influence on ionic conductivity.FDEEs with highly symmetric fluorination sites exhibit favorable viscosity,stability,and overall electrolyte performance.Conductivity primarily depends on lithium-anion dissociation or association.These findings provide design principles for rational fluoroether electrolyte design,emphasizing the trade-offs between stability,viscosity,and conductivity.Our work underscores the significance of considering fluorination patterns and molecular symmetry in the development of fluoroether-based electrolytes for advanced lithium batteries. 展开更多
关键词 Electrolyte engineering Fluoroether solvent Molecular simulation Machine learning
在线阅读 下载PDF
Hyperspectral imaging for one-step growth simulation of Brochothrix thermosphacta in chilled beef during storage
7
作者 Xiaohua Liu Binjing Zhou +7 位作者 Jin Song Kang Tu Jing Peng Weijie Lan Jing Xu Jie Wu Juqing Wu Leiqing Pan 《Food Science and Human Wellness》 2025年第1期226-235,共10页
In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate... In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate(μ_(max))of Brochothrix thermosphacta in chilled beef at isothermal temperatures(4-25℃).Three different methods were compared for model development,particularly using(Model Ⅰ)the predicted microbial loads from partial least squares regression of the whole spectral variables;(Model Ⅱ)the selected spectral variables related to microbial loads;and(Model Ⅲ)the first principal scores of HSI spectra by principal component analysis.Consequently,Model Ⅰ showed the best ability to predict the microbial loads of B.thermosphacta,with the coefficient of determination(R_(v)^(2))and root mean square error in internal validation(RMSEV)of 0.921 and 0.498(lg(CFU/g)).The T_(min)(-12.32℃)andμmax can be well estimated with R^(2) and root mean square error(RMSE)of 0.971 and 0.276(lg(CFU/g)),respectively.The upward trend ofμmax with temperature was similar to that of the plate count method.HSI technique thus can be used as a simple method for one-step growth simulation of B.thermosphacta in chilled beef during storage. 展开更多
关键词 Brochothrix thermosphacta BEEF Hyperspectral imaging Growth simulation One-step analysis Predictive microbiology
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
8
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
Dynamic impact simulation tests of deep roadways affected by high stress and fault slip
9
作者 Qi Wang Yuncai Wang +3 位作者 Zhenhua Jiang Hongpu Kang Chong Zhang Bei Jiang 《International Journal of Mining Science and Technology》 2025年第4期519-537,共19页
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ... As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed. 展开更多
关键词 Deep roadway Dynamic impact simulation High stress Fault slip Occurrence law
在线阅读 下载PDF
An Electro⁃thermal De⁃icing Model and Simulation Analysis Considering Ice Shedding
10
作者 ZHANG Yingying YUAN Xiansheng +1 位作者 XIONG Jingjiang BU Xueqin 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期162-177,共16页
The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electr... The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electrothermal de-icing seldom delve into comprehensive ice accretion-melting-deicing models that account for ice shedding.Therefore,the detachment behavior of ice layers during the heating process requires in-depth research and discussion.This paper physically models the phenomenon of ice shedding,incorporates the detachment behavior of ice layers during heating,improves the existing mathematical model for electro-thermal de-icing calculations,establishes an ice accretion-melting-deicing model for electro-thermal de-icing systems,and conducts numerical simulation,verification and optimization analysis of electro-thermal de-icing considering ice shedding.Through multi-condition de-icing numerical simulations of a specific wing model,it is found that ambient temperature can serve as a factor for adapting the electro heating anti/de-icing strategy to the environment.An optimization of heating heat flux density and heating/cooling time is conducted for the wing de-icing control law under the calculated conditions.The improved electrothermal de-icing model and algorithm developed in this paper provide solid technical support for the design of electrothermal de-icing systems. 展开更多
关键词 aircraft icing electro-thermal de-icing ice shedding electro-thermal control law numerical simulation
在线阅读 下载PDF
A robust seismic wavefield modeling method based on minimizing spatial simulation error using L_(2)-norm cost function
11
作者 Wei-Ting Peng Jian-Ping Huang 《Petroleum Science》 2025年第3期1051-1061,共11页
To reduce the spatial simulation error generated by the finite difference method,previous researchers compute the optimal finite-difference weights always by minimizing the error of spatial dispersion relation.However... To reduce the spatial simulation error generated by the finite difference method,previous researchers compute the optimal finite-difference weights always by minimizing the error of spatial dispersion relation.However,we prove that the spatial simulation error of the finite difference method is associated with the dot product of the spatial dispersion relation of the finite-difference weights and the spectrum of the seismic wavefield.Based on the dot product relation,we construct a L_(2) norm cost function to minimize spatial simulation error.For solving this optimization problem,the seismic wavefield infor-mation in wavenumber region is necessary.Nevertheless,the seismic wavefield is generally obtained by costly forward modeling techniques.To reduce the computational cost,we substitute the spectrum of the seismic wavelet for the spectrum of the seismic wavefield,as the seismic wavelet plays a key role in determining the seismic wavefield.In solving the optimization problem,we design an exhaustive search method to obtain the solution of the L_(2) norm optimization problem.After solving the optimization problem,we are able to achieve the finite-difference weights that minimize spatial simulation error.In theoretical error analyses,the finite-difference weights from the proposed method can output more accurate simulation results compared to those from previous optimization algorithms.Furthermore,we validate our method through numerical tests with synthetic models,which encompass homogenous/inhomogeneous media as well as isotropic and anisotropic media. 展开更多
关键词 Finite-difference scheme FD coefficients Spatial simulation error Spatial dispersion relation Seismic wavefield
在线阅读 下载PDF
Plastic deformation mechanism of γ-phase U–Mo alloy studied by molecular dynamics simulations
12
作者 Chang Wang Peng Peng Wen-Sheng Lai 《Chinese Physics B》 2025年第1期468-475,共8页
Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the p... Uranium–molybdenum(U–Mo) alloys are critical for nuclear power generation and propulsion because of their superior thermal conductivity, irradiation stability, and anti-swelling properties. This study explores the plastic deformation mechanisms of γ-phase U–Mo alloys using molecular dynamics(MD) simulations. In the slip model, the generalized stacking fault energy(GSFE) and the modified Peierls–Nabarro(P–N) model are used to determine the competitive relationships among different slip systems. In the twinning model, the generalized plane fault energy(GPFE) is assessed to evaluate the competition between slip and twinning. The findings reveal that among the three slip systems, the {110}<111>slip system is preferentially activated, while in the {112}<111> system, twinning is favored over slip, as confirmed by MD tensile simulations conducted in various directions. Additionally, the impact of Mo content on deformation behavior is emphasized. Insights are provided for optimizing process conditions to avoid γ → α′′ transitions, thereby maintaining a higher proportion of γ-phase U–Mo alloys for practical applications. 展开更多
关键词 U-Mo alloy molecular dynamics simulation plastic deformation mechanism dislocation slip twin formation
在线阅读 下载PDF
Evolution and generation mechanism of retained oil in lacustrine shales:A combined ReaxFF-MD and pyrolysis simulation perspective
13
作者 Biao Sun Xiao-Ping Liu +3 位作者 Jie Liu Tian Liu Zu-Xian Hua Wen-Di Peng 《Petroleum Science》 2025年第1期29-41,共13页
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay... To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil. 展开更多
关键词 Lacustrine shale Retained oiliness evolution Pyrolysis simulation experiments ReaxFF molecular dynamics Hydrocarbon generation evolution
在线阅读 下载PDF
Visualization simulation experiments and porosity evolution mechanisms of deep to ultra-deep carbonate reservoirs
14
作者 HU Anping SHE Min +4 位作者 SHEN Anjiang QIAO Zhanfeng LI Wenzheng DU Qiuding YUAN Changjian 《Petroleum Exploration and Development》 2025年第2期377-390,共14页
To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation ... To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation experimental device was developed for ultra-deep carbonate reservoirs.Carbonate rock samples from the Sichuan Basin and Tarim Basin were used to simulate the dissolution-precipitation process of deep to ultra-deep carbonate reservoirs in an analogous geological setting.This unit comprises four core modules:an ultra-high temperature,high pressure triaxial stress core holder module(temperature higher than 300°C,pressure higher than 150 MPa),a multi-stage continuous flow module with temperature-pressure regulation,an ultra-high temperature-pressure sapphire window cell and an in-situ high-temperature-pressure fluid property measurement module and real-time ultra-high temperature-pressure permeability detection module.The new experimental device was used for simulation experiment,the geological insights were obtained in three aspects.First,the pore-throat structure of carbonate is controlled by lithology and initial pore-throat structure,and fluid type,concentration and dissolution duration determine the degree of dissolution.The dissolution process exhibits two evolution patterns.The dissolution scale is positively correlated to the temperature and pressure,and the pore-forming peak period aligns well with the hydrocarbon generation peak period.Second,the dissolution potential of dolomite in an open flow system is greater than that of limestone,and secondary dissolved pores formed continuously are controlled by the type and concentration of acidic fluids and the initial physical properties.These pores predominantly distribute along pre-existing pore/fracture zones.Third,in a nearly closed diagenetic system,after the chemical reaction between acidic fluids and carbonate rock reaches saturation and dynamic equilibrium,the pore structure no longer changes,keeping pre-existing pores well-preserved.These findings have important guiding significance for the evaluation of pore-throat structure and development potential of deep to ultra-deep carbonate reservoirs,and the prediction of main controlling factors and distribution of high-quality carbonate reservoirs. 展开更多
关键词 deep to ultra-deep carbonate reservoir simulation experimental device pore-throat structure pore development pore distribution pore preservation Tarim Basin Sichuan Basin
在线阅读 下载PDF
基于Plant Simulation的电芯喷涂生产线仿真与优化
15
作者 李帅 高建超 +3 位作者 任炳旭 潘泽 郑妍 刘凉 《时代汽车》 2025年第1期145-147,共3页
物流仿真技术是当前对电池模组生产线进行生产工艺规划、瓶颈分析的常用手段。首先,基于Plant Simulation仿真工具,对某一品牌汽车电池模组生产线搭建物流系统仿真模型。其次,根据仿真结果对生产线的设备开通率、生产线的瓶颈及生产线... 物流仿真技术是当前对电池模组生产线进行生产工艺规划、瓶颈分析的常用手段。首先,基于Plant Simulation仿真工具,对某一品牌汽车电池模组生产线搭建物流系统仿真模型。其次,根据仿真结果对生产线的设备开通率、生产线的瓶颈及生产线的设备利用率和产线容量进行分析,对工艺设计提供理论依据。 展开更多
关键词 物流仿真 工艺规划 瓶颈 开通率 容量分析
在线阅读 下载PDF
Solidworks Flow Simulation在干燥箱设计中的仿真分析和应用
16
作者 侯彦凯 李鹏 +1 位作者 孙建军 周文健 《煤炭加工与综合利用》 2025年第1期20-23,共4页
干燥箱是煤炭全水分测定中制样的核心设备,针对新设计的干燥箱缺乏实际工况验证,需要结合现场应用情况进行优化的问题,提出了通过Solidworks Flow Simulation对干燥箱的整体结构进行流体仿真分析,力求缩短干燥箱的生命设计周期,减小成... 干燥箱是煤炭全水分测定中制样的核心设备,针对新设计的干燥箱缺乏实际工况验证,需要结合现场应用情况进行优化的问题,提出了通过Solidworks Flow Simulation对干燥箱的整体结构进行流体仿真分析,力求缩短干燥箱的生命设计周期,减小成本投入,达到最优的设计效果,根据仿真结果,对干燥箱的结构,尤其对其中的风道结构进行了调整,并再次根据新的风道结构,进行了仿真验证,证明了结构的可靠性。 展开更多
关键词 干燥箱 风道结构 流体仿真分析 仿真验证
在线阅读 下载PDF
基于SimulationX的提升机钢丝绳更换装置液压系统设计与仿真
17
作者 武彦生 《山西煤炭》 2025年第2期88-94,共7页
为解决矿井提升机钢丝绳传统更换方式存在效率较低、工人劳动强度大、人员受伤风险较大等问题,对矿井提升机钢丝绳更换方式进行研究,提出了一种提升机钢丝绳高效快速更换装置。利用三维建模软件设计了钢丝绳高效更换装置结构方案,并设... 为解决矿井提升机钢丝绳传统更换方式存在效率较低、工人劳动强度大、人员受伤风险较大等问题,对矿井提升机钢丝绳更换方式进行研究,提出了一种提升机钢丝绳高效快速更换装置。利用三维建模软件设计了钢丝绳高效更换装置结构方案,并设计了配套液压控制系统回路。对液压控制系统原理进行分析,采用机电液联合仿真软件SimulationX中搭建了液压系统控制回路,设定仿真时间为15 s,对不同的履带负载工况进行仿真。仿真结果表明,换绳装置液压系统能自动适配不同负载,到达最大位移值仅需要2.8 s,位移变化平稳,冲击较小,速度波动小,运行平稳。表明液压控制系统稳定且不会出现较大的冲击,液压系统设计合理,能满足现场要求。 展开更多
关键词 提升机 钢丝绳更换 液压系统 simulationX 数值模拟
在线阅读 下载PDF
Simulation and application analysis of a hybrid energy storage station in a new power system 被引量:1
18
作者 Tianyu Zhang Xiangjun Li +2 位作者 Hanning Li Hangyu Sun Weisen Zhao 《Global Energy Interconnection》 EI CSCD 2024年第5期553-562,共10页
As the proportion of renewable energy infiltrating the power grid increases,suppressing its randomness and volatility,reducing its impact on the safe operation of the power grid,and improving the level of new energy c... As the proportion of renewable energy infiltrating the power grid increases,suppressing its randomness and volatility,reducing its impact on the safe operation of the power grid,and improving the level of new energy consumption are increasingly important.For these purposes,energy storage stations(ESS)are receiving increasing attention.This article discusses the structure,working principle,and control methods of grid-following and grid-forming energy-storage converters,which are currently commonly used.A simulation analysis was conducted to investigate their dynamic response characteristics.The advantages and disadvantages of two types of energy storage power stations are discussed,and a configuration strategy for hybrid ESS is proposed.This paper presents research on and a simulation analysis of grid-forming and grid-following hybrid energy storage systems considering two types of energy storage according to different capacity scenarios.Finally,a comparative analysis between the systems is presented.A simulation model was established using PSD-BPA(Power System Department-Bonneville Power Administration)to analyze the impact of the capacity ratio of grid-following and grid-forming ESS on their dynamic response characteristics in a hybrid ESS.In addition,a development direction for future ESSs is indicated. 展开更多
关键词 ESS Grid-forming Grid-following simulation modeling Dynamic characteristic
在线阅读 下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations 被引量:1
19
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam Shock wave ATTENUATION Atomistic simulation
在线阅读 下载PDF
基于Plant Simulation的电装车间工艺流程仿真与优化
20
作者 赵璐 王大伟 李德雄 《航空电子技术》 2024年第4期72-78,共7页
基于Plant Simulation系统仿真软件,本文以某航空电子产品研发制造企业电装车间生产线为例,构建生产线生产过程仿真模型,并对其进行场景设计和仿真实验;通过对多次仿真实验结果的分析和比较,找出了影响生产线平衡和产能的瓶颈工序和设备... 基于Plant Simulation系统仿真软件,本文以某航空电子产品研发制造企业电装车间生产线为例,构建生产线生产过程仿真模型,并对其进行场景设计和仿真实验;通过对多次仿真实验结果的分析和比较,找出了影响生产线平衡和产能的瓶颈工序和设备,并提出了优化方案。试验结果显示,生产线中关键生产设备的负荷趋向均衡,非关键生产设备的利用率也随之提高,缓解了生产过程瓶颈。 展开更多
关键词 Plant simulation 均衡生产 优化仿真 产能瓶颈
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部