Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmab...Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.展开更多
Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing...Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).展开更多
Elastic control could balance the distributed control plane in Software-Defined Networking(SDN). Dynamic switch migration has been proposed to achieve it. However, existing schemes mainly focus on how to execute migra...Elastic control could balance the distributed control plane in Software-Defined Networking(SDN). Dynamic switch migration has been proposed to achieve it. However, existing schemes mainly focus on how to execute migration operation, but not why. This paper designs a decision-making mechanism based on zero-sum game theory to reelect a new controller as the master for migrated switches. It first chooses a switch for migration in the heavy controller which invites its neighbors as the game players to compete for the master role of this switch in the game-playing field(GPF) which is an occasional and loose domain for game-playing. Second, based on the concept of GPF, we design a decentralized strategy to play the game and determine which player as the final master. We implement it by extending the Open Flow protocol. Finally, numerical results demonstrate that our distributed strategy can approach elastic control plane with better performance.展开更多
Software- defined networking (SDN) is a promising technology for next-generation networking and has attracted much attention from academics, network equipment manufacturer, network operators, and service providers. ...Software- defined networking (SDN) is a promising technology for next-generation networking and has attracted much attention from academics, network equipment manufacturer, network operators, and service providers. It has found center, and enterprise networks. applications in mobile, data The SDN architecture has a centralized, programmable control plane that is separate from the data plane. SDN also provides the ability to control and manage virtualized resources and networks without requiring new hardware technologies. This is a major shift in networking technologies.展开更多
Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to...Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.展开更多
It is foreseen that the Internet of Things (IoT) will comprise billions of connected devices, and this will make the provi?sioning and operation of some IoT connectivity services more challenging. Indeed, IoT services...It is foreseen that the Internet of Things (IoT) will comprise billions of connected devices, and this will make the provi?sioning and operation of some IoT connectivity services more challenging. Indeed, IoT services are very different from lega?cy Internet services because of their dimensioning figures and also because IoT services differ dramatically in terms of na?ture and constraints. For example, IoT services often rely on energy and CPU?constrained sensor technologies, regardless of whether the service is for home automation, smart building, e?health, or power or water metering on a regional or national scale. Also, some IoT services, such as dynamic monitoring of biometric data, manipulation of sensitive information, and pri?vacy needs to be safeguarded whenever this information is for?warded over the underlying IoT network infrastructure. This paper discusses how software?defined networking (SDN) can facilitate the deployment and operation of some advanced IoT services regardless of their nature or scope. SDN introduces a high degree of automation in service delivery and operation-from dynamic IoT service parameter exposure and negotiation to resource allocation, service fulfillment, and assurance. This paper does not argue that all IoT services must adopt SDN. Rather, it is left to the discretion of operators to decide which IoT services can best leverage SDN capabilities. This paper only discusses managed IoT services, i.e., services that are op?erated by a service provider.展开更多
The low-cost,self-configuration capability and "plug-and-play" feature of Ethernet establishes its dominant position in the local area networks(LAN).However,it is hard to extend to large scale because of the...The low-cost,self-configuration capability and "plug-and-play" feature of Ethernet establishes its dominant position in the local area networks(LAN).However,it is hard to extend to large scale because of the legacy broadcast-based service discovery mechanism.Therefore,to solve this problem,a new split network architecture named Software-Defined Networking(SDN) is introduced in this paper,and a novel floodless service discovery mechanism(FSDM)for SDN is designed.For the FSDM,the widespread broadcast messages for Dynamic Host Configuration Protocol(DHCP) and Address Resolution Protocol(ARP) are considered especially,respectively.Then the DHCP relay and ARP proxy are proposed to handle DHCP broadcast messages and ARP broadcast messages,respectively.The proposed FSDM in this paper can eliminate flooding completely,reserve the autoconfiguration characteristics.Particularly,there is no need to change the existing hardware,software and protocols of hosts for the proposed scheme.Finally,the simulation results are demonstrated to show that our proposed model allows redundant links existed in network and has the property of scalability,which can significantly reduce network traffic in data plane and control traffic in control plane,and decrease the overhead of control plane.展开更多
Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is...Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.展开更多
New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and hete...New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.展开更多
By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN dep...By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.展开更多
Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some o...Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some orchestration architecture has been proposed to chain network functions, rare works are focused on how to optimize this process. In this paper, we propose an optimized model for network function orchestration, function combination model(FCM). Our main contributions are as following. First, network functions are featured with a new abstraction, and are open to external providers. And FCM identifies network functions using unique type, and organizes their instances distributed over the network with the appropriate way. Second, with the specialized demands, we can combine function instances under the global network views, and formulate it into the problem of Boolean linear program(BLP). A simulated annealing algorithm is designed to approach optimal solution for this BLP. Finally, the numerical experiment demonstrates that our model can create outstanding composite schemas efficiently.展开更多
When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain ser...When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.展开更多
The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, provides new possibilities for innovating on network design. Researchers have started to ex...The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, provides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solutions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only softwaredefined cellular network solutions and specifications in order to provide possible research directions.展开更多
To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-...To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-Defined Networking(SDN) provides a promising solution to manage the underlying network. In this paper, we introduce an SDN-enabled cloud mobile video distribution architecture and propose a joint video placement, request dispatching and traffic management mechanism to improve user experience and reduce the system operational cost. We use a utility function to capture the two aspects of user experience: the level of satisfaction and average latency, and formulate the joint optimization problem as a mixed integer programming problem. We develop an optimal algorithm based on dual decomposition and prove its optimality. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee user experience.展开更多
Software Defined Networking(SDN) provides a flexible and convenient way to support fine-grained traffic-engineering(TE). Besides, SDN also provides better Quality of Experience(QoE) for customers. However, the policy ...Software Defined Networking(SDN) provides a flexible and convenient way to support fine-grained traffic-engineering(TE). Besides, SDN also provides better Quality of Experience(QoE) for customers. However, the policy of the evolution from legacy networks to the SDNs overemphasizes the controllability of the network or TE while ignoring the customers' benefit. Standing in the customers' position, we propose an optimization scheme, named as Optimal Migration Schedule based on Customers' Benefit(OMSB), to produce an optimized migration schedule and maximize the benefit of customers. Not only the quality and quantity of paths availed by migration, but also the number of flows from the customers that can use these multi-paths are taken into consideration for the scheduling. We compare the OMSB with other six migration schemes in terms of the benefit of customers. Our results suggest that the sequence of the migration plays a vital role for customers, especially in the early stages of the network migration to the SDN.展开更多
探讨基于软件定义网络(Software Defined Network,SDN)的动态流量控制在通信网络安全中的应用。SDN将网络控制平面与数据平面分离,实现可编程和集中化管理。基于SDN的动态流量控制具有实时监测与响应、灵活流量调度、增强安全策略执行...探讨基于软件定义网络(Software Defined Network,SDN)的动态流量控制在通信网络安全中的应用。SDN将网络控制平面与数据平面分离,实现可编程和集中化管理。基于SDN的动态流量控制具有实时监测与响应、灵活流量调度、增强安全策略执行等优势,可用于网络攻击检测和防御、数据泄露防范及网络资源优化分配。通过实时监测异常流量、结合入侵检测系统/入侵防御系统(Intrusion Detection System/Intrusion Prevention System,IDS/IPS)、监控数据流量、加密与访问控制等手段提升安全性,同时实现流量负载均衡和资源分配优化,为通信网络安全提供有力保障。展开更多
随着下一代通信网的发展,传统网络架构已无法满足日益增长的灵活性、可扩展性及管理需求。软件定义网络(Software Defined Network,SDN)作为一种新型网络架构,为6G网络提供了新的研究方向。文章分析SDN的基本架构和工作原理,并总结SDN...随着下一代通信网的发展,传统网络架构已无法满足日益增长的灵活性、可扩展性及管理需求。软件定义网络(Software Defined Network,SDN)作为一种新型网络架构,为6G网络提供了新的研究方向。文章分析SDN的基本架构和工作原理,并总结SDN技术的优化方法。在此基础上,结合Mininet仿真平台对SDN与传统网络架构在6G应用场景下的性能进行对比实验。结果表明,SDN在网络延迟、丢包率及资源利用率等关键性能指标上显著优于传统网络架构,为6G网络的部署提供了重要理论依据和实践指导。展开更多
由于干线网络流量具有较强的波动性,传统的静态资源分配方法在资源调度上存在灵活性差、响应慢等问题。基于此,提出基于软件定义网络(Software Defined Network,SDN)和遗传算法优化的干线数字双链路动态资源调度方法。在SDN架构下实时...由于干线网络流量具有较强的波动性,传统的静态资源分配方法在资源调度上存在灵活性差、响应慢等问题。基于此,提出基于软件定义网络(Software Defined Network,SDN)和遗传算法优化的干线数字双链路动态资源调度方法。在SDN架构下实时监控干线数字双链路的可用带宽、时延等资源,以最大化带宽利用率、最小化时延为目标,构建一个干线数字双链路动态资源调度模型,通过遗传算法求解模型,得到最佳干线数字双链路动态资源调度策略。实验结果表明,设计方法在业务时延与业务丢包率方面具有一定优越性,可最大限度地保证干线数字双链路的数据传输质量。展开更多
基金supported by the Wuhan Frontier Program of Application Foundation (No.2018010401011295)National High Technology Research and Development Program of China (“863” Program) (Grant No. 2015AA016002)
文摘Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.
基金supported by the National Natural Science Foundation of China for Innovative Research Groups (61521003)the National Natural Science Foundation of China (61872382)+1 种基金the National Key Research and Development Program of China (2017YFB0803204)the Research and Development Program in Key Areas of Guangdong Province (No.2018B010113001)
文摘Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.61521003)the National Basic Research Program of China(2012CB315901,2013CB329104)+2 种基金the National Natural Science Foundation of China(Grant No.61372121,61309020,61309019)the National High-Tech Research&Development Program of China(Grant No.2013AA013505)the National Science and Technology Support Program Project(Grant No.2014BAH30B01)
文摘Elastic control could balance the distributed control plane in Software-Defined Networking(SDN). Dynamic switch migration has been proposed to achieve it. However, existing schemes mainly focus on how to execute migration operation, but not why. This paper designs a decision-making mechanism based on zero-sum game theory to reelect a new controller as the master for migrated switches. It first chooses a switch for migration in the heavy controller which invites its neighbors as the game players to compete for the master role of this switch in the game-playing field(GPF) which is an occasional and loose domain for game-playing. Second, based on the concept of GPF, we design a decentralized strategy to play the game and determine which player as the final master. We implement it by extending the Open Flow protocol. Finally, numerical results demonstrate that our distributed strategy can approach elastic control plane with better performance.
文摘Software- defined networking (SDN) is a promising technology for next-generation networking and has attracted much attention from academics, network equipment manufacturer, network operators, and service providers. It has found center, and enterprise networks. applications in mobile, data The SDN architecture has a centralized, programmable control plane that is separate from the data plane. SDN also provides the ability to control and manage virtualized resources and networks without requiring new hardware technologies. This is a major shift in networking technologies.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61521003)The National Key R&D Program of China (No.2016YFB0800101)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (No.61602509)Henan Province Key Technologies R&D Program of China(No.172102210615)
文摘Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.
文摘It is foreseen that the Internet of Things (IoT) will comprise billions of connected devices, and this will make the provi?sioning and operation of some IoT connectivity services more challenging. Indeed, IoT services are very different from lega?cy Internet services because of their dimensioning figures and also because IoT services differ dramatically in terms of na?ture and constraints. For example, IoT services often rely on energy and CPU?constrained sensor technologies, regardless of whether the service is for home automation, smart building, e?health, or power or water metering on a regional or national scale. Also, some IoT services, such as dynamic monitoring of biometric data, manipulation of sensitive information, and pri?vacy needs to be safeguarded whenever this information is for?warded over the underlying IoT network infrastructure. This paper discusses how software?defined networking (SDN) can facilitate the deployment and operation of some advanced IoT services regardless of their nature or scope. SDN introduces a high degree of automation in service delivery and operation-from dynamic IoT service parameter exposure and negotiation to resource allocation, service fulfillment, and assurance. This paper does not argue that all IoT services must adopt SDN. Rather, it is left to the discretion of operators to decide which IoT services can best leverage SDN capabilities. This paper only discusses managed IoT services, i.e., services that are op?erated by a service provider.
基金supported by the National Basic Research Program(973)of China(No.2012CB315801)the National Natural Science Fund(No.61302089,61300184)the fundamental research funds for the Central Universities(No.2013RC0113)
文摘The low-cost,self-configuration capability and "plug-and-play" feature of Ethernet establishes its dominant position in the local area networks(LAN).However,it is hard to extend to large scale because of the legacy broadcast-based service discovery mechanism.Therefore,to solve this problem,a new split network architecture named Software-Defined Networking(SDN) is introduced in this paper,and a novel floodless service discovery mechanism(FSDM)for SDN is designed.For the FSDM,the widespread broadcast messages for Dynamic Host Configuration Protocol(DHCP) and Address Resolution Protocol(ARP) are considered especially,respectively.Then the DHCP relay and ARP proxy are proposed to handle DHCP broadcast messages and ARP broadcast messages,respectively.The proposed FSDM in this paper can eliminate flooding completely,reserve the autoconfiguration characteristics.Particularly,there is no need to change the existing hardware,software and protocols of hosts for the proposed scheme.Finally,the simulation results are demonstrated to show that our proposed model allows redundant links existed in network and has the property of scalability,which can significantly reduce network traffic in data plane and control traffic in control plane,and decrease the overhead of control plane.
基金performed in the Projects " LIGHTNESS : Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects" (No. 318606) "COSIGN: Combining Optics and SDN In next Generation data centre Networks" (No. 619572) supported by European Commission FP7
文摘Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.
文摘New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.
基金supported in part by the National High Technology Research and Development Program(863 Program)of China under Grant No.2011AA01A101the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA01330the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA013303
文摘By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.
基金supported by the China Postdoctoral Fund Project (No.44603)the National Natural Science Foundation of China (No.61309020)+1 种基金the National key Research and Development Program of China (No.2016YFB0800100, 2016YFB0800101)the National Natural Science Fund for Creative Research Groups Project(No.61521003)
文摘Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some orchestration architecture has been proposed to chain network functions, rare works are focused on how to optimize this process. In this paper, we propose an optimized model for network function orchestration, function combination model(FCM). Our main contributions are as following. First, network functions are featured with a new abstraction, and are open to external providers. And FCM identifies network functions using unique type, and organizes their instances distributed over the network with the appropriate way. Second, with the specialized demands, we can combine function instances under the global network views, and formulate it into the problem of Boolean linear program(BLP). A simulated annealing algorithm is designed to approach optimal solution for this BLP. Finally, the numerical experiment demonstrates that our model can create outstanding composite schemas efficiently.
基金supported by the National Basic Research Program of China (2012CB315903)the Program for Key Science and Technology Innovation Team of Zhejiang Province(2011R50010,2013TD20)+3 种基金the National High Technology Research Program of China(2015AA016103)the National Natural Science Foundation of China(61379118)the Research Fund of ZTE CorporationJiaxing Science and Technology Project (No.2014AY21021)
文摘When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.
文摘The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, provides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solutions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only softwaredefined cellular network solutions and specifications in order to provide possible research directions.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.61233003)National Natural Science Foundation of China(Grant No.61503358)
文摘To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-Defined Networking(SDN) provides a promising solution to manage the underlying network. In this paper, we introduce an SDN-enabled cloud mobile video distribution architecture and propose a joint video placement, request dispatching and traffic management mechanism to improve user experience and reduce the system operational cost. We use a utility function to capture the two aspects of user experience: the level of satisfaction and average latency, and formulate the joint optimization problem as a mixed integer programming problem. We develop an optimal algorithm based on dual decomposition and prove its optimality. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee user experience.
基金supported by Joint Funds of National Natural Science Foundation of China and Xinjiang under code U1603261the Research Fund of Ministry of Education-China Mobile under Grant No. MCM20160304the Fundamental Research Funds for the Central Universities
文摘Software Defined Networking(SDN) provides a flexible and convenient way to support fine-grained traffic-engineering(TE). Besides, SDN also provides better Quality of Experience(QoE) for customers. However, the policy of the evolution from legacy networks to the SDNs overemphasizes the controllability of the network or TE while ignoring the customers' benefit. Standing in the customers' position, we propose an optimization scheme, named as Optimal Migration Schedule based on Customers' Benefit(OMSB), to produce an optimized migration schedule and maximize the benefit of customers. Not only the quality and quantity of paths availed by migration, but also the number of flows from the customers that can use these multi-paths are taken into consideration for the scheduling. We compare the OMSB with other six migration schemes in terms of the benefit of customers. Our results suggest that the sequence of the migration plays a vital role for customers, especially in the early stages of the network migration to the SDN.
文摘随着下一代通信网的发展,传统网络架构已无法满足日益增长的灵活性、可扩展性及管理需求。软件定义网络(Software Defined Network,SDN)作为一种新型网络架构,为6G网络提供了新的研究方向。文章分析SDN的基本架构和工作原理,并总结SDN技术的优化方法。在此基础上,结合Mininet仿真平台对SDN与传统网络架构在6G应用场景下的性能进行对比实验。结果表明,SDN在网络延迟、丢包率及资源利用率等关键性能指标上显著优于传统网络架构,为6G网络的部署提供了重要理论依据和实践指导。
文摘由于干线网络流量具有较强的波动性,传统的静态资源分配方法在资源调度上存在灵活性差、响应慢等问题。基于此,提出基于软件定义网络(Software Defined Network,SDN)和遗传算法优化的干线数字双链路动态资源调度方法。在SDN架构下实时监控干线数字双链路的可用带宽、时延等资源,以最大化带宽利用率、最小化时延为目标,构建一个干线数字双链路动态资源调度模型,通过遗传算法求解模型,得到最佳干线数字双链路动态资源调度策略。实验结果表明,设计方法在业务时延与业务丢包率方面具有一定优越性,可最大限度地保证干线数字双链路的数据传输质量。