近年来,综合能源系统作为一种以多种能源形态和设备相互交互的能源系统方案得到了广泛应用和研究.然而,在面对动态复杂的多能源系统时,传统的优化调度方法往往无法满足其实时性和精准度需求.因此,本文设计了一种软深度确定性策略梯度(So...近年来,综合能源系统作为一种以多种能源形态和设备相互交互的能源系统方案得到了广泛应用和研究.然而,在面对动态复杂的多能源系统时,传统的优化调度方法往往无法满足其实时性和精准度需求.因此,本文设计了一种软深度确定性策略梯度(Soft Deep Deterministic Policy Gradient,Soft-DDPG)算法驱动的综合能源系统优化调度方法,以最小化调度周期内系统总运行成本为目标,建立设备运行综合能效评估模型,再采用Soft-DDPG算法对每个能源设备的能效调度动作进行优化控制.Soft-DDPG算法将softmax算子引入到动作值函数的计算中,有效降低了Q值高估问题.与此同时,该算法在动作选择策略中加入了随机噪声,提高了算法的学习效率.实验结果显示,本文所提出的方法解决了综合能源系统能效调度实时性差、精准度低的瓶颈问题,实现了系统的高效灵活调度,降低了系统的总运行成本.展开更多
文摘近年来,综合能源系统作为一种以多种能源形态和设备相互交互的能源系统方案得到了广泛应用和研究.然而,在面对动态复杂的多能源系统时,传统的优化调度方法往往无法满足其实时性和精准度需求.因此,本文设计了一种软深度确定性策略梯度(Soft Deep Deterministic Policy Gradient,Soft-DDPG)算法驱动的综合能源系统优化调度方法,以最小化调度周期内系统总运行成本为目标,建立设备运行综合能效评估模型,再采用Soft-DDPG算法对每个能源设备的能效调度动作进行优化控制.Soft-DDPG算法将softmax算子引入到动作值函数的计算中,有效降低了Q值高估问题.与此同时,该算法在动作选择策略中加入了随机噪声,提高了算法的学习效率.实验结果显示,本文所提出的方法解决了综合能源系统能效调度实时性差、精准度低的瓶颈问题,实现了系统的高效灵活调度,降低了系统的总运行成本.