The occurrence of social security events is uncertain, and the distribution characteristics are highly complex due to a variety of external factors, posing challenges to their rapid and effective handling. The scienti...The occurrence of social security events is uncertain, and the distribution characteristics are highly complex due to a variety of external factors, posing challenges to their rapid and effective handling. The scientific and reasonable requirement evaluation of the emergency force to deal with social security events is very urgent. Based on data analysis, this paper uses the neural network, operational research, modelling and simulation to predict and analyze social security events, studies the usage rule of emergency force and deployment algorithm, and conducts simulation experiments to evaluate and compare the different force deployment schemes for selection.展开更多
The wheel brake system safety is a complex problem which refers to its technical state, operating environment, human factors, etc., in aircraft landing taxiing process. Usually, professors consider system safety with ...The wheel brake system safety is a complex problem which refers to its technical state, operating environment, human factors, etc., in aircraft landing taxiing process. Usually, professors consider system safety with traditional probability techniques based on the linear chain of events. However, it could not comprehensively analyze system safety problems, especially in operating environment, interaction of subsystems, and human factors. Thus,we consider system safety as a control problem based on the system-theoretic accident model, the processes(STAMP) model and the system theoretic process analysis(STPA) technique to compensate the deficiency of traditional techniques. Meanwhile,system safety simulation is considered as system control simulation, and Monte Carlo methods are used which consider the range of uncertain parameters and operation deviation to quantitatively study system safety influence factors in control simulation. Firstly,we construct the STAMP model and STPA feedback control loop of the wheel brake system based on the system functional requirement. Then four unsafe control actions are identified, and causes of them are analyzed. Finally, we construct the Monte Carlo simulation model to analyze different scenarios under disturbance. The results provide a basis for choosing corresponding process model variables in constructing the context table and show that appropriate brake strategies could prevent hazards in aircraft landing taxiing.展开更多
In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and th...In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and the real-time property of system has been lucubrated.Electronic countermeasure simulation system is the key part of military training of individuals;it can also allow the realistic evaluation of the performance of modern equipments and techniques.As a proof,we have drawn up a series of simulation scenarios,such as radar electronic reconnaissance simulation scenario,to explain the feasibility and the superiority of our modeling scheme in this paper.展开更多
Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians pass...Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.展开更多
This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is va...This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.展开更多
文摘The occurrence of social security events is uncertain, and the distribution characteristics are highly complex due to a variety of external factors, posing challenges to their rapid and effective handling. The scientific and reasonable requirement evaluation of the emergency force to deal with social security events is very urgent. Based on data analysis, this paper uses the neural network, operational research, modelling and simulation to predict and analyze social security events, studies the usage rule of emergency force and deployment algorithm, and conducts simulation experiments to evaluate and compare the different force deployment schemes for selection.
文摘The wheel brake system safety is a complex problem which refers to its technical state, operating environment, human factors, etc., in aircraft landing taxiing process. Usually, professors consider system safety with traditional probability techniques based on the linear chain of events. However, it could not comprehensively analyze system safety problems, especially in operating environment, interaction of subsystems, and human factors. Thus,we consider system safety as a control problem based on the system-theoretic accident model, the processes(STAMP) model and the system theoretic process analysis(STPA) technique to compensate the deficiency of traditional techniques. Meanwhile,system safety simulation is considered as system control simulation, and Monte Carlo methods are used which consider the range of uncertain parameters and operation deviation to quantitatively study system safety influence factors in control simulation. Firstly,we construct the STAMP model and STPA feedback control loop of the wheel brake system based on the system functional requirement. Then four unsafe control actions are identified, and causes of them are analyzed. Finally, we construct the Monte Carlo simulation model to analyze different scenarios under disturbance. The results provide a basis for choosing corresponding process model variables in constructing the context table and show that appropriate brake strategies could prevent hazards in aircraft landing taxiing.
基金supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.18JK0286)Weinan Science and Technology Initiatives Fund program(Program No.2019JCYJ-2-6)+2 种基金Teaching Reform Project of Weinan Normal University(Program No.JG201704)Industry-University-Cooperation Education Project of the Ministry of Education of China(Program No.201702030020,201801082110)Weinan Normal University's Characteristic Discipline Construction Project Electronic Information(Computer Technology)Master's Degree Point Construction Project(18TSXK06)。
文摘In this paper,we proposed a new design scheme of real time electronic countermeasure simulation system.This paper mainly expounds the modeling and realization methods of each part of the whole simulation system,and the real-time property of system has been lucubrated.Electronic countermeasure simulation system is the key part of military training of individuals;it can also allow the realistic evaluation of the performance of modern equipments and techniques.As a proof,we have drawn up a series of simulation scenarios,such as radar electronic reconnaissance simulation scenario,to explain the feasibility and the superiority of our modeling scheme in this paper.
基金Project(70972041)supported by the National Natural Science Foundation of ChinaProject(20100009110010)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(2011YJS246)supported by Fundamental Research Funds for the Central Universities of China
文摘Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.
基金Supported by National Natural Science Foundation of P. R. China (60273028)
文摘This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.