函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。展开更多
强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的...强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的基础上,本文提出一种基于站间传递函数的CSEM有效信号提取方法.首先,从多域对同步观测的CSEM数据进行质量评价,优选出高信噪比的参考站;其次,基于参考站与测站之间的时域信号方差比(Ratio of variance,ROV)实现测站强干扰噪声的快速识别与定位,采用密度聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)筛选出测站高信噪比数据段,并构建频率域站间传递函数;最后,考虑各道之间的相关性,利用参考站信号与站间传递函数对受强干扰时间段的观测数据进行处理,从而实现了强干扰环境下CSEM有效信号的高精度提取.通过对仿真信号与广域电磁法(Wide Field Electromagnetic Method,WFEM)实测数据的处理,验证了方法的有效性和实用性.结果表明,本文提出的基于站间传递函数的CSEM信噪分离方法不仅考虑了多道同步观测数据之间的相关性,还能在不增加野外工作量的基础上实现对有效信号的高精度提取,方法具有普适性,为CSEM同步阵列数据处理提供了一种快速、可行的解决方案.展开更多
文摘函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。
文摘强干扰区多类噪声时空叠加,对电磁勘探的影响严重且复杂.以往的人工源电磁(Controlled-Source Electromagnetic Method,CSEM)信号处理方法大多针对单道数据进行处理,并未考虑各道之间的相关性,从而产生非必要的误差.为此,在同步观测的基础上,本文提出一种基于站间传递函数的CSEM有效信号提取方法.首先,从多域对同步观测的CSEM数据进行质量评价,优选出高信噪比的参考站;其次,基于参考站与测站之间的时域信号方差比(Ratio of variance,ROV)实现测站强干扰噪声的快速识别与定位,采用密度聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)筛选出测站高信噪比数据段,并构建频率域站间传递函数;最后,考虑各道之间的相关性,利用参考站信号与站间传递函数对受强干扰时间段的观测数据进行处理,从而实现了强干扰环境下CSEM有效信号的高精度提取.通过对仿真信号与广域电磁法(Wide Field Electromagnetic Method,WFEM)实测数据的处理,验证了方法的有效性和实用性.结果表明,本文提出的基于站间传递函数的CSEM信噪分离方法不仅考虑了多道同步观测数据之间的相关性,还能在不增加野外工作量的基础上实现对有效信号的高精度提取,方法具有普适性,为CSEM同步阵列数据处理提供了一种快速、可行的解决方案.