This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles(such as 12.7 mm bullets).A comparative experiment utilizing the control...This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles(such as 12.7 mm bullets).A comparative experiment utilizing the control variable method was designed to figure out the influence of tiny eccentric centroids on the projectiles.The study critically analyzes data obtained from characteristic parameter measurements and precision trials.It also combines Sobol’s algorithm with an artificial intelligence algorithmdAdaptive Neuro-Fuzzy Inference Systems(ANFIS)ein order to conduct global sensitivity analysis and determine which parameters were most influential.The results indicate that the impact points of projectiles with an entry angle of 0°deflected to the left to that of projectiles with an entry angle of 90°.The difference of the mean coordinates of impact points was about 12.61 cm at a target range of 200 m.Variance analysis indicated that the entry angleei.e.the initial position of mass eccentricityehad a notable influence.After global sensitivity analysis,the significance of the effect of mass eccentricity was confirmed again and the most influential factors were determined to be the axial moment and transverse moment of inertia(Izz Iyy),the mass of a projectile(m),the distance between nose and center of mass along the symmetry axis for a projectile(Lm),and the eccentric distance of the centroid(Lr).The results imply that the control scheme by means of modifying mass center(moving mass or mass eccentricity)is promising for designing small-caliber spin-stabilized projectiles.展开更多
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
基金supported by the Fundamental Research Funds for the Central Universities,China(grant no.30918012203)the Foundation of National Laboratory,China(grant no.JCKYS2019209C001)。
文摘This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles(such as 12.7 mm bullets).A comparative experiment utilizing the control variable method was designed to figure out the influence of tiny eccentric centroids on the projectiles.The study critically analyzes data obtained from characteristic parameter measurements and precision trials.It also combines Sobol’s algorithm with an artificial intelligence algorithmdAdaptive Neuro-Fuzzy Inference Systems(ANFIS)ein order to conduct global sensitivity analysis and determine which parameters were most influential.The results indicate that the impact points of projectiles with an entry angle of 0°deflected to the left to that of projectiles with an entry angle of 90°.The difference of the mean coordinates of impact points was about 12.61 cm at a target range of 200 m.Variance analysis indicated that the entry angleei.e.the initial position of mass eccentricityehad a notable influence.After global sensitivity analysis,the significance of the effect of mass eccentricity was confirmed again and the most influential factors were determined to be the axial moment and transverse moment of inertia(Izz Iyy),the mass of a projectile(m),the distance between nose and center of mass along the symmetry axis for a projectile(Lm),and the eccentric distance of the centroid(Lr).The results imply that the control scheme by means of modifying mass center(moving mass or mass eccentricity)is promising for designing small-caliber spin-stabilized projectiles.
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.