期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8改进的车机交互手势识别算法
1
作者 王大虎 侯伟华 +1 位作者 张艳伟 张新科 《印刷与数字媒体技术研究》 北大核心 2025年第4期210-220,共11页
为了提升车机手势交互场景中手势识别的精度,解决检测算法模型参数量大、检测速度慢的问题,本研究提出一种基于YOLOv8改进的轻量化车机交互手势识别模型。首先,使用Slim-neck模块改进YOLOv8模型的颈部网络,减少计算量的同时提高模型的... 为了提升车机手势交互场景中手势识别的精度,解决检测算法模型参数量大、检测速度慢的问题,本研究提出一种基于YOLOv8改进的轻量化车机交互手势识别模型。首先,使用Slim-neck模块改进YOLOv8模型的颈部网络,减少计算量的同时提高模型的特征表达能力。其次,引入共享卷积层的概念来改进检测头,实现检测头的轻量化设计,提高检测速度。同时,还增加CBAM(Convolutional Block Attention Module)注意力机制模块,提高模型对手势特征的感知能力和判别性;引入基于Inner-IoU的Inner-CIoU损失函数加速边界框回归,解决CIoU存在的泛化性弱和收敛速度慢的问题。最后,与常用的YOLO模型进行对比,以验证模型的优越性。实验结果表明,本研究提出的算法在自制数据集上优于其他模型,检测精确率为99.2%,推理速度达到了7ms,满足高精度和实时检测的设计需求。 展开更多
关键词 YOLOv8 轻量化 手势识别 slim-neck CBAM Inner-CIoU
在线阅读 下载PDF
基于改进YOLOv8n的自然场景下苹果外观品质检测方法 被引量:3
2
作者 王会征 李新龙 +4 位作者 薄萍 刘海藤 刘家天 焦乐宁 兰玉彬 《农业工程学报》 北大核心 2025年第11期173-182,共10页
为快速精准检测自然场景下的苹果外观品质,该研究提出了一种基于改进YOLOv8n的苹果外观品质检测模型ZAL-YOLOv8n。首先,使用融合了部分卷积(partial convolution,PConv)与高效多尺度注意力机制(efficient multiscale attention,EMA)的EP... 为快速精准检测自然场景下的苹果外观品质,该研究提出了一种基于改进YOLOv8n的苹果外观品质检测模型ZAL-YOLOv8n。首先,使用融合了部分卷积(partial convolution,PConv)与高效多尺度注意力机制(efficient multiscale attention,EMA)的EP-C2f模块替换骨干网络中的C2f模块,提升模型对复杂遮挡情况下苹果目标的特征提取能力。其次,为改善患病苹果表皮病斑区域定位不准的问题,引入基于最小点距离的损失函数(multiple path distance intersection over union,MPDIoU)作为边界回归损失函数来加速预测框与真实框之间的位置拟合,提高模型对病害识别能力。最后,使用Slim-neck架构重建YOLOv8n的特征融合网络,实现颈部网络轻量化,提高模型运行速度。结果表明,与原模型相比,改进后的YOLOv8n模型的准确率、召回率和平均精度均值分别提高了3.4、1.1、1.3个百分点,同时,浮点运算量、参数量和模型大小分别缩减了22.2%、17.7%、15.9%。该模型在提高检测精度的同时实现了一定程度的轻量化,可为苹果智能采摘机器人的研发提供技术支撑。 展开更多
关键词 苹果 YOLOv8n 目标检测 slim-neck 高效多尺度注意力机制 损失函数
在线阅读 下载PDF
轻量级钢材表面缺陷检测的YOLOv8改进方法 被引量:1
3
作者 沈学利 赵青华 《兵器装备工程学报》 北大核心 2025年第4期302-309,共8页
针对目前钢材缺陷检测模型计算量大、模型复杂度高,导致在计算能力有限的设备部署缺陷检测算法困难的问题,提出一种轻量化检测模型YOLO-SSC。采用SPD-Conv模块替换Backbone中的CBS模块,减少小目标细粒度特征信息损失,提高缺陷检测精度;... 针对目前钢材缺陷检测模型计算量大、模型复杂度高,导致在计算能力有限的设备部署缺陷检测算法困难的问题,提出一种轻量化检测模型YOLO-SSC。采用SPD-Conv模块替换Backbone中的CBS模块,减少小目标细粒度特征信息损失,提高缺陷检测精度;采用GSConv构建Slim-neck颈部结构,减少模型计算量和参数量;设计C2f-Faster-GAM结构,进一步轻量化模型,提升模型对重要信息的关注度。在NEU-DET带钢缺陷数据集上实验,YOLO-SSC算法的参数量和计算量分别为2.27×10^(6)和5.8 GFLOPs,仅为基线的75.4%和71.6%。mAP和准确率较基线分别提高了2.2%和1.7%,实验表明提出的模型具有良好的检测性能。 展开更多
关键词 表面缺陷 缺陷检测 钢材 YOLOv8 轻量化模型 slim-neck
在线阅读 下载PDF
改进YOLOv8n的电磁离合器端面缺陷检测 被引量:1
4
作者 魏书豪 徐红伟 +2 位作者 柯海森 李孝禄 丁建雄 《现代制造工程》 北大核心 2025年第5期126-134,共9页
电磁离合器是汽车生产过程中的重要部件,针对其端面缺陷尺寸微小、背景纹理复杂以及现有算法无法实现缺陷多样性检测等问题,提出了基于改进YOLOv8n的轻量级目标检测算法。在主干网络中融合EMA注意力和部分卷积,设计了轻量级的C2F-PE模... 电磁离合器是汽车生产过程中的重要部件,针对其端面缺陷尺寸微小、背景纹理复杂以及现有算法无法实现缺陷多样性检测等问题,提出了基于改进YOLOv8n的轻量级目标检测算法。在主干网络中融合EMA注意力和部分卷积,设计了轻量级的C2F-PE模块以改进C2F结构,增强网络的特征提取能力;为促进相同尺度间更丰富的特征融合,引入自注意力内尺度特征交互(AIFI)模块替换SPPF层,以捕获更细粒度的信息;在颈部网络中添加小目标检测层,有效地融合了浅层特征信息,提升了模型对小目标的感知力;引入Slim-neck模块改进颈部网络,轻量化模型的同时保持网络的检测精度。实验结果表明,改进后的算法相较于YOLOv8n算法,mAP@0.5达到94.6%,提升了4.5%,参数量减少13.3%,检测速度达到81 f/s。该算法更好地平衡了检测精度和速度,满足电磁离合器生产中实时检测的需求。 展开更多
关键词 YOLOv8n 电磁离合器 缺陷检测 轻量级网络 EMA注意力 内尺度特征交互 slim-neck模块
在线阅读 下载PDF
基于改进YOLOv8n的竹节检测方法
5
作者 李贵强 陈继飞 《农机使用与维修》 2025年第6期1-8,共8页
竹节的快速检测和准确识别是提高竹子初加工质量的重要前提。针对竹子加工避节难的问题,提出了一种YOLOv8n-CSM竹节检测模型。首先,采用ConvNeXt v2作为骨干特征提取网络,以增强网络的特征提取能力;其次,使用广义稀疏卷积(Generalized-S... 竹节的快速检测和准确识别是提高竹子初加工质量的重要前提。针对竹子加工避节难的问题,提出了一种YOLOv8n-CSM竹节检测模型。首先,采用ConvNeXt v2作为骨干特征提取网络,以增强网络的特征提取能力;其次,使用广义稀疏卷积(Generalized-Sparse Convolution, GSConv)和VoVGSCSP模块搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,将多尺度卷积注意力机制(Multi-scale convolutional attention, MSCA)嵌入到模型的主干输出端,以增强模型对竹节的特征提取能力并削弱背景干扰。结果表明,优化的YOLOv8n-CSM模型,其在竹节测试集上的平均精度均值(Mean average precision, mAP)达94.4%。与目标检测模型YOLOv3-tiny、YOLOv5、YOLOv6和YOLOv8n相比,YOLOv8n-CSM模型的mAP0.5分别高出0.5,1.1,1.3,1.5个百分点,可为竹节快速准确检测提供技术支持。 展开更多
关键词 目标检测 竹节 YOLOv8n MSCA注意力机制 slim-neck ConvNeXt v2
在线阅读 下载PDF
基于改进YOLOv8n的林草火灾检测算法
6
作者 赵佳硕 马晓春 刘舰泽 《森林工程》 北大核心 2025年第5期1013-1024,共12页
在林草火灾场景中,明火形态的多样性以及环境的复杂性可能导致误检或漏检的现象发生,为此,针对森林与草原火灾提出一种基于改进的YOLOv8n火灾检测算法(YOLOv8n-CSA),CSA(channel-spatial attention)为通道-空间注意力模块,引入分组混洗... 在林草火灾场景中,明火形态的多样性以及环境的复杂性可能导致误检或漏检的现象发生,为此,针对森林与草原火灾提出一种基于改进的YOLOv8n火灾检测算法(YOLOv8n-CSA),CSA(channel-spatial attention)为通道-空间注意力模块,引入分组混洗卷积模块(group shuffle convolution,GSConv)替换原YOLOv8n中第3层标准卷积模块(convolution,Conv),降低模型计算量,提高特征提取能力。并且在head中引入Slim-Neck结构进一步降低模型计算量。同时设计YOLOv8n-CSA融入Backbone部分,以增强输入特征图的表达能力。该模块结合通道注意力、通道洗牌和空间注意力机制,旨在捕捉特征图中的全局依赖关系。基于林草火灾数据集,在未导入预训练模型的情况下,提出的火灾检测网络模型在测试的数据集上相比原模型YOLOv8n,其精确率(Precision)提高了3.7%、召回率(Recall)提高了1.51%、平均精度均值(mAP50)提高了3.24%、计算复杂度(GFLOPs)下降5.62%。试验结果表明,该算法验证计算量减少的同时,能够提升火灾迹象目标的检测性能。 展开更多
关键词 火灾检测 YOLOv8 通道空间注意力 slim-neck结构 分组混洗卷积模块GSConv
在线阅读 下载PDF
CSM-YOLO:一种面向飞机表面缺陷检测的轻量化高精度网络
7
作者 介战铎 张争明 +2 位作者 黄浩然 郝明 赵俭邦 《空军工程大学学报》 北大核心 2025年第5期11-21,共11页
针对现有基于视觉的飞机机体表面缺陷检测方法普遍存在检测精度低、参数量和计算量大,且难以同时兼顾精度提高和模型轻量化,提出一种新的同时兼顾高精度和轻量化的飞机机体表面缺陷检测方法(CSM-YOLO)。首先,通过设计C2f-SCSA模块替换... 针对现有基于视觉的飞机机体表面缺陷检测方法普遍存在检测精度低、参数量和计算量大,且难以同时兼顾精度提高和模型轻量化,提出一种新的同时兼顾高精度和轻量化的飞机机体表面缺陷检测方法(CSM-YOLO)。首先,通过设计C2f-SCSA模块替换主干网络C2f模块以动态增强多尺度特征、提高模型对关键特征信息的捕获、提取、利用能力,解决因下采样引起的特征信息丢失问题。其次,使用跨层直连方式改进Slim-Neck特征融合网络应用于模型颈部,实现提高模型计算效率的同时减少信息丢失,提高检测精度。最后,使用最小点距离交并比损失(MPDIoU Loss)提高边界框回归精确性,有效提高小目标缺陷检测精度,减少误检和漏检情况。实验结果表明,CSM-YOLO模型兼顾高精度、轻量化,对机体表面缺陷取得最高检测精度88.34%,较基线模型YOLOv8n提高2.92%,较YOLOv3-tiny、YOLOv5n、YOLOv5s、YOLOv7-tiny、YOLOv9t、YOLOv12n算法提升明显。在模型参数量和计算量方面,CSM-YOLO的参数量和计算量分别为2.67×10^(6)/s和7.68×10^(9)/s,较基线模型YOLOv8n分别减少0.34×10^(6)/s和0.41×10^(9)/s,实现了同时兼顾精度提高和模型轻量化。CSM-YOLO在飞机机体表面缺陷检测数据集上取得了显著的性能提升,为机体表面缺陷的自动化检测提供了有效的解决方案。 展开更多
关键词 飞机表面缺陷检测 YOLOv8 模型轻量化 空间-通道协同注意力 MPDIoU损失 slim-neck
在线阅读 下载PDF
基于改进YOLOv7的棉田虫害检测 被引量:11
8
作者 孙俊 贾忆琳 +3 位作者 吴兆祺 周鑫 沈继锋 武小红 《农业工程学报》 EI CAS CSCD 北大核心 2024年第10期176-184,共9页
棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,该研究提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络... 棉田虫害的快速检测与准确识别是预防棉田虫害、提高棉花品质的重要前提。针对真实棉田环境下昆虫相似度高、背景干扰严重的问题,该研究提出一种ECSF-YOLOv7棉田虫害检测模型。首先,采用EfficientFormerV2作为特征提取网络,以加强网络的特征提取能力并减少模型参数量;同时,将卷积注意力模块(convolution block attention module,CBAM)嵌入到模型的主干输出端,以增强模型对小目标的特征提取能力并削弱背景干扰;其次,使用GSConv卷积搭建Slim-Neck颈部网络结构,在减少模型参数量的同时保持模型的识别精度;最后,采用Focal-EIOU(focal and efficient IOU loss,Focal-EIOU)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的ECSF-YOLOv7模型在棉田虫害测试集上的平均精度均值(mean average precision,mAP)为95.71%,检测速度为69.47帧/s。与主流的目标检测模型YOLOv7、SSD、YOLOv5l和YOLOX-m相比,ECSF-YOLOv7模型的mAP分别高出1.43、9.08、1.94、1.52个百分点,并且改进模型具有参数量更小、检测速度更快的优势,可为棉田虫害快速准确检测提供技术支持。 展开更多
关键词 模型 图像处理 棉田虫害 YOLOv7 注意力机制 slim-neck Focal-EIOU
在线阅读 下载PDF
基于改进YOLO v5s的水稻害虫识别研究 被引量:10
9
作者 王泰华 郭亚州 +1 位作者 张家乐 张晨阳 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期39-48,共10页
水稻害虫识别时,受稻田环境影响易出现目标被遮挡、与背景颜色相似、多目标相邻等问题导致识别精度降低。为此本文提出了一种基于改进YOLO v5s的水稻害虫识别模型YOLO v5s-Coordslimneck,通过替换主干网络中的普通卷积为CoordConv,增强... 水稻害虫识别时,受稻田环境影响易出现目标被遮挡、与背景颜色相似、多目标相邻等问题导致识别精度降低。为此本文提出了一种基于改进YOLO v5s的水稻害虫识别模型YOLO v5s-Coordslimneck,通过替换主干网络中的普通卷积为CoordConv,增强了模型对目标位置信息的获取能力;引入CBAM注意力机制,提升了模型对目标区域的关注度;采用Slim-neck减少了计算量并增强了特征处理能力;引入Soft-NMS算法优化相邻目标边框筛选,减少漏检。实验结果表明,改进后的YOLO v5s模型在水稻害虫数据集上的平均精度均值达到94.3%,相比原模型提升3.8个百分点,比其他主流模型YOLO v3、YOLO R-CSP、YOLO v7、YOLO v8s提升1.5、12.7、13.6、1.9个百分点。消融实验进一步验证了改进模型中各个组件的有效性。热力图分析也体现了改进模型能够更好地学习害虫特征。综上,本文提出的改进YOLO v5s模型在提高水稻害虫检测精度方面取得了显著成效,为防控水稻虫害提供了一种精确的识别方法。 展开更多
关键词 水稻 害虫识别 CBAM slim-neck YOLO v5s
在线阅读 下载PDF
基于YOLOv5s和改进质心跟踪的人员跌倒检测 被引量:6
10
作者 王新 杨秀梅 《电子测量技术》 北大核心 2023年第24期172-178,共7页
针对目标检测器检测跌倒时过于依赖卷积网络分类效果、无法利用运动信息的问题,本文设计了一种基于YOLOv5s和改进质心跟踪的跌倒检测模型。为解决耗费资源问题,用MobileNetV3网络和Slim Neck模块对YOLOv5s进行轻量化,同时将MobileNetV3... 针对目标检测器检测跌倒时过于依赖卷积网络分类效果、无法利用运动信息的问题,本文设计了一种基于YOLOv5s和改进质心跟踪的跌倒检测模型。为解决耗费资源问题,用MobileNetV3网络和Slim Neck模块对YOLOv5s进行轻量化,同时将MobileNetV3网络中的SE模块替换为更高效的ECA模块,降低网络复杂度的同时保持较高的精度。引入哈希感知算法改进质心跟踪,增加目标关联的依据,提高跌倒检测的准确性。实验结果显示改进YOLOv5s模型大小下降52.2%,计算量下降51.8%,精度高达90.3%。改进质心跟踪的跌倒检测模型准确率提高了4.3%。结果表明了本文提出模型的有效性和优越性。 展开更多
关键词 跌倒检测 YOLOv5s 质心跟踪 slim neck 哈希感知算法
在线阅读 下载PDF
基于Yolov7_Pose的轻量化人体姿态估计网络 被引量:1
11
作者 黄健 胡翻 展越 《现代电子技术》 北大核心 2024年第23期98-104,共7页
人体姿态估计在计算机视觉、人机交互与运动分析等领域广泛应用。当前人体姿态估计算法往往通过构建复杂的网络来提高精度,但这带来了模型体量和计算量增大,以及检测速度变慢等问题。因此,文中提出一种基于Yolov7_Pose的轻量化人体姿态... 人体姿态估计在计算机视觉、人机交互与运动分析等领域广泛应用。当前人体姿态估计算法往往通过构建复杂的网络来提高精度,但这带来了模型体量和计算量增大,以及检测速度变慢等问题。因此,文中提出一种基于Yolov7_Pose的轻量化人体姿态估计网络。首先,采用轻量化CARAFE模块替换原网络中的上采样模块,完成上采样工作;接着,在特征融合部分引入轻量化Slim-neck模块,以降低模型的计算量和复杂度;最后,提出了RFB-NAM模块,将其添加到主干网络中,用以获取多个不同尺度的特征信息,扩大感受野,提高特征提取能力。实验结果表明,改进后网络模型的GFLOPs和模型大小分别降低了约18.1%、22%,检测速度提升37.93%,并在低光环境、小目标、密集人群和俯视角度下表现出了较好的性能。 展开更多
关键词 人体姿态估计 Yolov7_Pose 轻量化 上采样 CARAFE slim-neck
在线阅读 下载PDF
基于SOE-YOLO轻量化的水面目标检测算法 被引量:6
12
作者 曾志超 徐玥 +3 位作者 王景玉 叶元龙 黄志开 王欢 《图学学报》 CSCD 北大核心 2024年第4期736-744,共9页
针对复杂多变的水面环境,小目标检测存在漏检、错检且检测平台计算资源有限的问题,提出了基于YOLOv8的轻量化水面目标检测算法SOE-YOLO。首先在Neck部分使用包含GSConv的Slim-Neck设计范式对模型进行轻量化改进;其次通过使用轻量型卷积(... 针对复杂多变的水面环境,小目标检测存在漏检、错检且检测平台计算资源有限的问题,提出了基于YOLOv8的轻量化水面目标检测算法SOE-YOLO。首先在Neck部分使用包含GSConv的Slim-Neck设计范式对模型进行轻量化改进;其次通过使用轻量型卷积(ODConv)模块重新构建Backbone部分,以减少参数量从而提高网络的检测速度;最后引入多尺度注意力机制(EMA)增强网络多尺度特征提取能力,提高小目标检测能力。在WSODD测试集中的实验结果表明,SOE-YOLO模型参数量和计算量分别为2.8 M和6.6 GFLOPs,与原模型相比分别减少12.5%和18.6%,同时mAP@%0.5和mAP@0.5-0.95分别达到79.9%和47.2%,与原模型相比分别提高2.4%和1.6%,且漏检率下降明显,优于当前流行的目标检测算法。FPS达到了64.25,满足水面目标检测实时性的要求。在实现轻量化的同时具有更好的检测性能,满足了在计算资源受限环境下的部署需求。 展开更多
关键词 水面目标检测 YOLOv8 轻量化改进 slim-neck设计范式 注意力机制
在线阅读 下载PDF
注意力特征融合的番茄叶部早期病斑诊断算法 被引量:6
13
作者 金婷婷 房建东 赵于东 《电子测量技术》 北大核心 2024年第4期156-164,共9页
番茄产量受到病害、天气等因素的影响,其中番茄生长过程中叶片的病害问题是影响番茄产量的最关键因素。然而,在叶片病害检测领域,现有模型普遍存在泛化能力不足以及小病斑漏检率高等问题。提出一种改进的番茄病害早期检测算法,通过对YOL... 番茄产量受到病害、天气等因素的影响,其中番茄生长过程中叶片的病害问题是影响番茄产量的最关键因素。然而,在叶片病害检测领域,现有模型普遍存在泛化能力不足以及小病斑漏检率高等问题。提出一种改进的番茄病害早期检测算法,通过对YOLOv5s网络进行多方面的优化来改善这些问题,同时保持模型轻量化。首先,采用Mosaic 9数据增强技术,强化了模型对小病斑的检测能力,增加了图像背景的复杂度,提高了模型的泛化能力;其次,使用GSConv和Slim-Neck网络,在保持模型准确性的前提下轻量化模型,降低计算负担;同时,使用SimAM注意力机制更准确地捕捉叶片上的小病斑特征,从而降低漏检率;此外,为了进一步增强多尺度目标的检测能力,引入自适应空间特征融合,有效地整合不同尺度的特征,提升了多尺度目标,特别是小目标的检测准确性。实验结果表明:该模型在叶片病害早期检测方面表现出色,对叶霉、早疫、晚疫以及健康叶片四种番茄病害的早期平均识别准确率、召回率、F1分数及mAP分别达到了0.951%、0.918%、0.934%、0.948%。可见该方法对于小病斑具有较好的检测性能,改善了模型泛化能力不足及小病斑检测过程中的漏检问题,进一步提高了检测效果。 展开更多
关键词 YOLOv5s 番茄早期病斑 GSConv和slim-neck 注意力机制 特征融合
在线阅读 下载PDF
矿用无人驾驶车辆行人检测技术研究 被引量:3
14
作者 周李兵 于政乾 +4 位作者 卫健健 蒋雪利 叶柏松 赵叶鑫 杨斯亮 《工矿自动化》 CSCD 北大核心 2024年第10期29-37,共9页
矿用无人驾驶车辆的工作环境光照条件复杂,行人检测经常出现漏检现象,导致矿用无人驾驶车辆可靠性及安全性不足。针对巷道光照条件复杂的问题,提出了一种弱光图像增强算法:将弱光图像由RGB图像空间分解为HSV图像空间,通过Logarithm函数... 矿用无人驾驶车辆的工作环境光照条件复杂,行人检测经常出现漏检现象,导致矿用无人驾驶车辆可靠性及安全性不足。针对巷道光照条件复杂的问题,提出了一种弱光图像增强算法:将弱光图像由RGB图像空间分解为HSV图像空间,通过Logarithm函数对亮度分量先进行光照,再通过双边滤波器去除噪声;采用形态学对饱和度分量进行闭操作,再通过高斯滤波器滤除噪声;将图像转换回RGB图像空间,通过半隐式ROF去噪模型对图像再次进行去噪,得到增强图像。针对行人检测存在漏检、精度低的问题,提出了一种基于改进YOLOv3的矿用无人驾驶车辆行人检测算法:采用密集连接块取代YOLOv3中的Residual连接,提高特征图利用率;采用Slim-neck结构优化YOLOv3的特征融合结构,使得特征图之间能够进行高效的信息融合,进一步提高对小目标行人的检测精度,并利用其内部特殊的轻量化卷积结构,提高检测速度;加入轻量级的卷积注意力模块(CBAM)增强算法对目标类别和位置的注意程度,提高行人检测精度。实验结果表明:(1)提出的弱光图像增强算法能够有效提高图像可见度,图像中行人的纹理更加清晰,并具有更好的噪声抑制效果。(2)基于增强后图像的矿用无人驾驶车辆行人检测算法的平均精度达95.68%,相较于基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别算法、YOLOv5、YOLOv3算法分别提高了2.53%,6.42%,11.77%,且运行时间为29.31 ms。(3)基于增强后图像,YOLOv3和基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别算法出现了漏检和误检的问题,而矿用无人驾驶车辆行人检测算法有效改善了该问题。 展开更多
关键词 矿用无人驾驶车辆 井下行人检测 YOLOv3 弱光图像增强 半隐式ROF去噪 密集连接模块 slim-neck 卷积注意力模块
在线阅读 下载PDF
改进YOLOv7-tiny的轴套零件表面缺陷检测算法
15
作者 李大伟 孙一兰 +1 位作者 王品 叶明亮 《制造技术与机床》 北大核心 2024年第6期133-140,共8页
为了能够提高轴套表面缺陷的检测精度和效率,文章提出了改进YOLOv7-tiny的轴套表面缺陷检测算法。首先在模型的特征提取上,针对处理任意维度的数据,把标准卷积替换为全维动态卷积(omni dimensional dynamic convolution,ODConv);其次在... 为了能够提高轴套表面缺陷的检测精度和效率,文章提出了改进YOLOv7-tiny的轴套表面缺陷检测算法。首先在模型的特征提取上,针对处理任意维度的数据,把标准卷积替换为全维动态卷积(omni dimensional dynamic convolution,ODConv);其次在特征融合中,把上采样部分的最邻近插值替换为轻量级算子CARAFE;在拼接处引入BiFormer,增加对局部小目标的检测;最后通过把标准卷积替换为GSConv的方式,引入Slim-Neck模块。最终,在轴套数据集上做对比和消融实验,与原模型相比,改进后的算法在mAP上提高了7.7%,在局部小目标上提高了11%;在FPS上提升了40.3。用改进后的算法在公开GC10-DET数据集下做通用性实验,结果表明该算法具有通用性。 展开更多
关键词 缺陷检测 全维动态卷积 CARAFE BiFormer slim-neck
在线阅读 下载PDF
改进YOLOv8n的托盘目标检测算法
16
作者 刘晓非 薛瑞雷 +1 位作者 钟华刚 刘彦君 《电子测量技术》 2025年第20期133-143,共11页
针对现实工厂环境下,光线不足、障碍物较多等因素的干扰,时常会对托盘造成漏检、误检等问题,提出一种基于改进YOLOv8n的托盘目标检测方法。首先,将结合Transformer的BRA稀疏注意力模块加入到YOLOv8n模型的主干网络特征提取环节,以减少... 针对现实工厂环境下,光线不足、障碍物较多等因素的干扰,时常会对托盘造成漏检、误检等问题,提出一种基于改进YOLOv8n的托盘目标检测方法。首先,将结合Transformer的BRA稀疏注意力模块加入到YOLOv8n模型的主干网络特征提取环节,以减少障碍物遮挡对托盘检测的干扰;其次,引入Shape-IoU损失函数,进一步增强了模型在光线不足以及背景干扰严重情况下对托盘的识别能力;最后,利用基于GSConv的Slim-neck结构重构YOLOv8n的特征融合网络,实现轻量化颈部网络。实验结果表明,改进后的算法在测试集上的平均精度均值达到89.6%,相较于原模型提升2.8%,漏检率和误检率分别下降2%和2.2%,有效改善了光线不足和障碍物遮挡情况下托盘识别的漏检和误检问题,同时检测帧率达到330.52 fps,可以快速精准地进行托盘检测识别,适合部署在智能叉车上,以提高运营效率并提升仓库智能化水平。 展开更多
关键词 托盘检测 YOLOv8n BRA稀疏注意力模块 Shape-IoU 基于GSConv的slim-neck结构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部