A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
Because of the complication of geological procedures,the recorded data have the feature of nonlinear.The multi-fractal singularity value decomposition (MSVD) was used to decomposed the gravity data.In this paper,the M...Because of the complication of geological procedures,the recorded data have the feature of nonlinear.The multi-fractal singularity value decomposition (MSVD) was used to decomposed the gravity data.In this paper,the MSVD was utilized to extract the gravity anomaly associated with the gold mineralization in Tongshi gold field in the southwest of Shandong province.The results showed that the Tongshi complex with negative circular gravity anomaly is an important ore-controlling factor.And the positive ring gravity anomaly distributed展开更多
动力电池在复杂多变工况下,离线参数辨识无法实时反映电池动态特性导致参数辨识精度低,无迹卡尔曼滤波(untraceable Kalman filter,UKF)在估计电池荷电状态(State of charge,SOC)时对噪声处理十分有限,同时在处理协方差矩阵时出现非正...动力电池在复杂多变工况下,离线参数辨识无法实时反映电池动态特性导致参数辨识精度低,无迹卡尔曼滤波(untraceable Kalman filter,UKF)在估计电池荷电状态(State of charge,SOC)时对噪声处理十分有限,同时在处理协方差矩阵时出现非正定问题会导致算法波动和估计失效。基于双极化(dual polarization,DP)电路模型提出了遗忘因子递推最小二乘法(forgotten factor recursive least squares,FFRLS)和奇异值分解-自适应无迹卡尔曼滤波法(singular value decomposition-adaptive untraceable Kalman filter,SVD-AUKF)对电池SOC进行在线估计。仿真结果表明,在复杂工况下(美国联邦城市运行工况),与真实SOC值进行比较,SVD-AUKF进行模拟验证时平均绝对误差和均方根误差分别为0.5286%和0.5447%,在传统UKF算法基础上分别提高了57.96%和63.3%,进一步表明SVD-AUKF准确性和稳定性更高。展开更多
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别...针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。展开更多
针对滚动轴承振动信号易受噪声影响,难以提取故障特征信息的问题,提出一种奇异值分解(singular value decomposition,SVD)重构结合最小熵反卷积(minimum entropy deconvolution,MED)增强的滚动轴承故障特征提取方法。首先,对振动信号进...针对滚动轴承振动信号易受噪声影响,难以提取故障特征信息的问题,提出一种奇异值分解(singular value decomposition,SVD)重构结合最小熵反卷积(minimum entropy deconvolution,MED)增强的滚动轴承故障特征提取方法。首先,对振动信号进行SVD分解,并计算奇异分量(singular component,SC)对应线性峭度(L-kurtosis)值;其次,根据线性峭度值结合设定阈值筛选SC,叠加得到重构信号;随后,对重构信号利用MED进行增强,凸出信号中周期冲击成分;最后,结合包络解调提取故障特征频率。仿真信号及实测信号分析结果表明,该方法可以降低噪声对振动信号的影响且凸显故障的特征信息,实现故障诊断。展开更多
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
文摘Because of the complication of geological procedures,the recorded data have the feature of nonlinear.The multi-fractal singularity value decomposition (MSVD) was used to decomposed the gravity data.In this paper,the MSVD was utilized to extract the gravity anomaly associated with the gold mineralization in Tongshi gold field in the southwest of Shandong province.The results showed that the Tongshi complex with negative circular gravity anomaly is an important ore-controlling factor.And the positive ring gravity anomaly distributed
文摘动力电池在复杂多变工况下,离线参数辨识无法实时反映电池动态特性导致参数辨识精度低,无迹卡尔曼滤波(untraceable Kalman filter,UKF)在估计电池荷电状态(State of charge,SOC)时对噪声处理十分有限,同时在处理协方差矩阵时出现非正定问题会导致算法波动和估计失效。基于双极化(dual polarization,DP)电路模型提出了遗忘因子递推最小二乘法(forgotten factor recursive least squares,FFRLS)和奇异值分解-自适应无迹卡尔曼滤波法(singular value decomposition-adaptive untraceable Kalman filter,SVD-AUKF)对电池SOC进行在线估计。仿真结果表明,在复杂工况下(美国联邦城市运行工况),与真实SOC值进行比较,SVD-AUKF进行模拟验证时平均绝对误差和均方根误差分别为0.5286%和0.5447%,在传统UKF算法基础上分别提高了57.96%和63.3%,进一步表明SVD-AUKF准确性和稳定性更高。
文摘针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。