Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals noth...This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.展开更多
As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly ess...As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional(ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated.The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience.展开更多
In this paper,the Orlicz centroid function for log-concave functions is introduced.A rearrangement inequality of the Orlicz centroid function for log-concave functions is obtained.The rearrangement inequality implies ...In this paper,the Orlicz centroid function for log-concave functions is introduced.A rearrangement inequality of the Orlicz centroid function for log-concave functions is obtained.The rearrangement inequality implies the Orlicz Busemann-Petty centroid inequality of Lutwak,Yang and Zhang[23].展开更多
Plant-based milks are on the rise due to an increased awareness of their sustainability and health benefits.Currently,dairy milk is the most nutritionally complete beverage,but it suffers from the presence of indigest...Plant-based milks are on the rise due to an increased awareness of their sustainability and health benefits.Currently,dairy milk is the most nutritionally complete beverage,but it suffers from the presence of indigestible lactose and allergenic proteins.Coconut milk has been around for a long time,but its application is limited due to a perceived lack of specific nutrients,high saturated fat levels,and low acceptability.Recent evidence indicates,however,that the saturated fat and other plant-based components found in coconut milk are good for metabolic outcomes and brain health.The conversion of coconut milk to yoghurt will further improve its functionality by boosting its existing nutritional qualities.In this article,the nutritional value of coconut milk,as well as its potential downsides,its application as yoghurt,and suggestions for enhancing its nutritional functionality will be examined.展开更多
In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hil...In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hilbert space,on which the concerned operator A is self-adjoint.Then we construct the fundamental solutions to the problem,obtain the necessary and sufficient conditions for eigenvalues,and prove that the eigenvalues are simple.Finally,we investigate Green’s functions of such problem.展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study...The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study examined 10 leaf functional traits(LFTs)of 70 common plant species in an evergreen broad-leaved forest in Huangshan Mountain to decipher their adaptive strategies.The phylogenetic signals of these LFTs were assessed and phylogenetically independent contrasts(PIC)and correlation analyses were carried out.LFTs were analyzed to determine their CSR(C:competitor,S:stress-tolerator,R:ruderal)strategies.The results show that plant species exhibit different leaf functional traits and ecological strategies(nine strategies were identified;the most abundant were S/CS and S/CSR strategies).Some traits showed significant phylogenetic signals,indicating the effect of phylogeny on LFTs to an extent.Trait variations among species suggest distinct adaptation strategies to environmental changes.The study species were mainly clustered on the C-S strategy axis,with a high S component.Species leaning toward the C-strategy end(e.g.,deciduous species),favored a resource acquisition strategy characterized by higher specific leaf area(SLA),greater nutrient contents(N and P),lower leaf dry matter content(LDMC),and reduced nutrient utilization efficiency(C:N and C:P).Conversely,species closer to the S-strategy end(e.g.,evergreen species)usually adopted a resource conservative strategy with trait combinations contrary to those of C-strategy species.Overall,this study corroborated the applicability of the CSR strategy at a local scale and provides insights into the varied trait combinations and ecological strategies employed by plant species to adapt to their environment.These findings contribute to a better understanding of the mechanisms involved in biodiversity maintenance.展开更多
Platinum-based(Pt)catalysts are notoriously susceptible to deactivation in industrial chemical processes due to carbon monoxide(CO)poisoning.Overcoming this poisoning deactivation of Pt-based catalysts while enhancing...Platinum-based(Pt)catalysts are notoriously susceptible to deactivation in industrial chemical processes due to carbon monoxide(CO)poisoning.Overcoming this poisoning deactivation of Pt-based catalysts while enhancing their catalytic activity,selectivity,and durability remains a major challenge.Herein,we propose a strategy to enhance the CO tolerance of Pt clusters(Pt_n)by introducing neighboring functionalized guest single atoms(such as Fe,Co,Ni,Cu,Sb,and Bi).Among them,antimony(Sb)single atoms(SAs)exhibit significant performance enhancement,achieving 99%CO selectivity and 33.6%CO_(2)conversion at 450℃,Experimental results and density functional theory(DFT)calculations indicate the optimization arises from the electronic interaction between neighboring functionalized Sb SAs and Pt clusters,leading to optimal 5d electron redistribution in Pt clusters compared to other functionalized guest single atoms.The redistribution of 5d electrons weaken both theσdonation andπbackdonation interactions,resulting in a weakened bond strength with CO and enhancing catalyst activity and selectivity.In situ environmental transmission electron microscopy(ETEM)further demonstrates the exception thermal stability of the catalyst,even under H_(2)at 700℃.Notably,the functionalized Sb SAs also improve CO tolerance in various heterogenous catalysts,including Co/CeO_(2),Ni/CeO_(2),Pt/Al_(2)O_(3),and Pt/CeO_(2)-C.This finding provides an effective approach to overcome the primary challenge of CO poisoning in Pt-based catalysts,making their broader applications in various industrial catalysts.展开更多
Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutri...Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutritional compounds and functional metabolites is crucial for the development of functional foods from medicinal and dietary plants.Nuclear magnetic resonance(NMR)and mass spectrometry(MS)are indispensable and essential technologies that provide an unsurpassed wealth of untargeted identification,quantitative and qualitative analysis,and structural information in the study of food and plant products.In the past decade,the rapid development of modern analytical technology has led to the emergence of new approaches and strategies for natural products discovery.Especially the application of novel NMRand MS-based identification and dereplication strategies aided by artificial intelligence and machine learning algorithms have brought about a significant shift in the natural products discovery process.These developments and changes in the natural products filed have given us insights into how to accurately target and mining nutritional,functional,and bioactive compounds.Thus,we have summarized recent research on novel NMR and MS based strategies and methods focusing on functional compounds,accurate identification and efficient discovery mainly in medicinal and dietary plants.This review could provide a comprehensive perspective for a better understanding of novel strategies and methods based on NMR and MS technologies,which could provide valuable insights and ideas for functional compounds mining.展开更多
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method...In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.展开更多
Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few wo...Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.展开更多
BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated th...BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated the bidirectional causal relationship between systemic iron parameters and LV structure and function in a preserved ejection fraction population.METHODS Transferrin saturation(TSAT),total iron binding capacity(TIBC),and serum iron and ferritin levels were extracted as instrumental variables for iron parameters from meta-analyses of public genome-wide association studies.Individuals without myocardial infarction history,HF,or LV ejection fraction(LVEF)<50%(n=16,923)in the UK Biobank Cardiovascular Magnetic Resonance Imaging Study constituted the outcome dataset.The dataset included LV end-diastolic volume,LV endsystolic volume,LV mass(LVM),and LVM-to-end-diastolic volume ratio(LVMVR).We used a two-sample bidirectional MR study with inverse variance weighting(IVW)as the primary analysis method and estimation methods using different algorithms to improve the robustness of the results.RESULTS In the IVW analysis,one standard deviation(SD)increased in TSAT significantly correlated with decreased LVMVR(β=-0.1365;95%confidence interval[CI]:-0.2092 to-0.0638;P=0.0002)after Bonferroni adjustment.Conversely,no significant relationships were observed between other iron and LV parameters.After Bonferroni correction,reverse MR analysis showed that one SD increase in LVEF significantly correlated with decreased TSAT(β=-0.0699;95%CI:-0.1087 to-0.0311;P=0.0004).No heterogeneity or pleiotropic effects evidence was observed in the analysis.CONCLUSIONS We demonstrated a causal relationship between TSAT and LV remodeling and function in a preserved ejection fraction population.展开更多
In recent years,network attacks have been characterized by diversification and scale,which indicates a requirement for defense strategies to sacrifice generalizability for higher security.As the latest theoretical ach...In recent years,network attacks have been characterized by diversification and scale,which indicates a requirement for defense strategies to sacrifice generalizability for higher security.As the latest theoretical achievement in active defense,mimic defense demonstrates high robustness against complex attacks.This study proposes a Function-aware,Bayesian adjudication,and Adaptive updating Mimic Defense(FBAMD)theory for addressing the current problems of existing work including limited ability to resist unknown threats,imprecise heterogeneous metrics,and over-reliance on relatively-correct axiom.FBAMD incorporates three critical steps.Firstly,the common features of executors’vulnerabilities are obtained from the perspective of the functional implementation(i.e,input-output relationships extraction).Secondly,a new adjudication mechanism considering Bayes’theory is proposed by leveraging the advantages of both current results and historical confidence.Furthermore,posterior confidence can be updated regularly with prior adjudication information,which provides mimic system adaptability.The experimental analysis shows that FBAMD exhibits the best performance in the face of different types of attacks compared to the state-of-the-art over real-world datasets.This study presents a promising step toward the theo-retical innovation of mimic defense.展开更多
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides minin...Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides mining was slow due to lack of reference genome and protein sequence data.In this study,we illustrated full-length transcriptome sequencing to interpret the proteome of CGS meat and obtain 10703 coding DNA sequences.By functional annotation and amino acid composition analysis,we have discovered various genes related to signal transduction,and 16 genes related to longevity.We have also found vast variety of functional peptides through protein coding sequence(CDS)analysis by comparing the data obtained with the functional peptide database.Val-Pro-Ile predicted by the CDS analysis was released from the CGS meat through enzymatic hydrolysis,suggesting that our approach is reliable.This study suggested that transcriptomic analysis can be used as a reference to guide polypeptide mining in CGS meat,thereby providing a powerful mining strategy for the bioresources with unknown genomic and proteomic sequences.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
基金National Key Research and Development Program of China(2021YFB3101402)National Natural Science Foundation of China(62202294)。
文摘This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.
基金Project supported by the National Natural Science Foundation of China (Grant No. 71971150)the Project of Research Center for System Sciences and Enterprise Development (Grant No. Xq16B05)the Fundamental Research Funds for the Central Universities of China (Grant No. SXYPY202313)。
文摘As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional(ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated.The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience.
基金Supported in part by NSFC(12071378,12461009),20XLB012,KJQN202100527,CSTB2022NSCQ-MSX0259 and KJQN202300557.
文摘In this paper,the Orlicz centroid function for log-concave functions is introduced.A rearrangement inequality of the Orlicz centroid function for log-concave functions is obtained.The rearrangement inequality implies the Orlicz Busemann-Petty centroid inequality of Lutwak,Yang and Zhang[23].
基金Universiti Putra Malaysia Inisiatif Putra Siswazah Grant,with a reference to UPM.RMC.800-2/1/2022/GPIPS/9740400Ministry of Higher Education,Malaysia(01-01-20-2323FR,with reference code:FRGS/1/2020/STG01/UPM/02/2)for the financial support。
文摘Plant-based milks are on the rise due to an increased awareness of their sustainability and health benefits.Currently,dairy milk is the most nutritionally complete beverage,but it suffers from the presence of indigestible lactose and allergenic proteins.Coconut milk has been around for a long time,but its application is limited due to a perceived lack of specific nutrients,high saturated fat levels,and low acceptability.Recent evidence indicates,however,that the saturated fat and other plant-based components found in coconut milk are good for metabolic outcomes and brain health.The conversion of coconut milk to yoghurt will further improve its functionality by boosting its existing nutritional qualities.In this article,the nutritional value of coconut milk,as well as its potential downsides,its application as yoghurt,and suggestions for enhancing its nutritional functionality will be examined.
基金supported by the National Natural Science Foundation of China(No.12461086)the Natural Science Foundation of Hubei Province(No.2022CFC016)。
文摘In this paper,we study a class of Sturm-Liouville problems,where the boundary conditions involve eigenparameters.Firstly,by defining a new inner product which depends on the transmission conditions,we obtain a new Hilbert space,on which the concerned operator A is self-adjoint.Then we construct the fundamental solutions to the problem,obtain the necessary and sufficient conditions for eigenvalues,and prove that the eigenvalues are simple.Finally,we investigate Green’s functions of such problem.
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
基金supported by the Special Foundation for National Science and Technology Basic Resources Investigation of China(2019FY202300)the Biodiversity Survey,Observation and Assessment Project of the Ministry of Ecology and Environment(2110404).
文摘The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study examined 10 leaf functional traits(LFTs)of 70 common plant species in an evergreen broad-leaved forest in Huangshan Mountain to decipher their adaptive strategies.The phylogenetic signals of these LFTs were assessed and phylogenetically independent contrasts(PIC)and correlation analyses were carried out.LFTs were analyzed to determine their CSR(C:competitor,S:stress-tolerator,R:ruderal)strategies.The results show that plant species exhibit different leaf functional traits and ecological strategies(nine strategies were identified;the most abundant were S/CS and S/CSR strategies).Some traits showed significant phylogenetic signals,indicating the effect of phylogeny on LFTs to an extent.Trait variations among species suggest distinct adaptation strategies to environmental changes.The study species were mainly clustered on the C-S strategy axis,with a high S component.Species leaning toward the C-strategy end(e.g.,deciduous species),favored a resource acquisition strategy characterized by higher specific leaf area(SLA),greater nutrient contents(N and P),lower leaf dry matter content(LDMC),and reduced nutrient utilization efficiency(C:N and C:P).Conversely,species closer to the S-strategy end(e.g.,evergreen species)usually adopted a resource conservative strategy with trait combinations contrary to those of C-strategy species.Overall,this study corroborated the applicability of the CSR strategy at a local scale and provides insights into the varied trait combinations and ecological strategies employed by plant species to adapt to their environment.These findings contribute to a better understanding of the mechanisms involved in biodiversity maintenance.
基金financially supported by the Shanghai RisingStar Program(No.23QA1403700)the National Natural Science Foundation of China(NSFC,Grant No.U2230102)+1 种基金the sponsored by National Key Research and Development Program of China(No.2021YFB3502200)the Shanghai Technical Service Center of Science and Engineering Computing,Shanghai University.
文摘Platinum-based(Pt)catalysts are notoriously susceptible to deactivation in industrial chemical processes due to carbon monoxide(CO)poisoning.Overcoming this poisoning deactivation of Pt-based catalysts while enhancing their catalytic activity,selectivity,and durability remains a major challenge.Herein,we propose a strategy to enhance the CO tolerance of Pt clusters(Pt_n)by introducing neighboring functionalized guest single atoms(such as Fe,Co,Ni,Cu,Sb,and Bi).Among them,antimony(Sb)single atoms(SAs)exhibit significant performance enhancement,achieving 99%CO selectivity and 33.6%CO_(2)conversion at 450℃,Experimental results and density functional theory(DFT)calculations indicate the optimization arises from the electronic interaction between neighboring functionalized Sb SAs and Pt clusters,leading to optimal 5d electron redistribution in Pt clusters compared to other functionalized guest single atoms.The redistribution of 5d electrons weaken both theσdonation andπbackdonation interactions,resulting in a weakened bond strength with CO and enhancing catalyst activity and selectivity.In situ environmental transmission electron microscopy(ETEM)further demonstrates the exception thermal stability of the catalyst,even under H_(2)at 700℃.Notably,the functionalized Sb SAs also improve CO tolerance in various heterogenous catalysts,including Co/CeO_(2),Ni/CeO_(2),Pt/Al_(2)O_(3),and Pt/CeO_(2)-C.This finding provides an effective approach to overcome the primary challenge of CO poisoning in Pt-based catalysts,making their broader applications in various industrial catalysts.
基金financially supported by the National Key R&D Program of China(2022YFF1100301)Major Science and Technology Project of Henan Province(231100310200)+1 种基金National Natural Science Foundation of China(32370426)Yunnan Province Science and Technology Department(202305AH340005),and Dr Plant。
文摘Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutritional compounds and functional metabolites is crucial for the development of functional foods from medicinal and dietary plants.Nuclear magnetic resonance(NMR)and mass spectrometry(MS)are indispensable and essential technologies that provide an unsurpassed wealth of untargeted identification,quantitative and qualitative analysis,and structural information in the study of food and plant products.In the past decade,the rapid development of modern analytical technology has led to the emergence of new approaches and strategies for natural products discovery.Especially the application of novel NMRand MS-based identification and dereplication strategies aided by artificial intelligence and machine learning algorithms have brought about a significant shift in the natural products discovery process.These developments and changes in the natural products filed have given us insights into how to accurately target and mining nutritional,functional,and bioactive compounds.Thus,we have summarized recent research on novel NMR and MS based strategies and methods focusing on functional compounds,accurate identification and efficient discovery mainly in medicinal and dietary plants.This review could provide a comprehensive perspective for a better understanding of novel strategies and methods based on NMR and MS technologies,which could provide valuable insights and ideas for functional compounds mining.
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2021R1I1A1A0105621313, No. 2022R1F1A1074441, No. 2022K1A3A1A20014496, and No. 2022R1F1A1074083)supported by the Ministry of Education Funding (No. RIS 2021-004)supported by the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00284318).
文摘In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
基金the Postdoctoral ScienceFoundation of China(No.2023M730156)the NationalNatural Foundation of China(No.62301012).
文摘Hyper-and multi-spectral image fusion is an important technology to produce hyper-spectral and hyper-resolution images,which always depends on the spectral response function andthe point spread function.However,few works have been payed on the estimation of the two degra-dation functions.To learn the two functions from image pairs to be fused,we propose a Dirichletnetwork,where both functions are properly constrained.Specifically,the spatial response function isconstrained with positivity,while the Dirichlet distribution along with a total variation is imposedon the point spread function.To the best of our knowledge,the neural network and the Dirichlet regularization are exclusively investigated,for the first time,to estimate the degradation functions.Both image degradation and fusion experiments demonstrate the effectiveness and superiority of theproposed Dirichlet network.
基金funded by the Key Research and Development of the Gansu Province(No.20YF8FA 079)the Construction Project of the Gansu Clinical Medical Research Center(No.18JR2FA003).
文摘BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated the bidirectional causal relationship between systemic iron parameters and LV structure and function in a preserved ejection fraction population.METHODS Transferrin saturation(TSAT),total iron binding capacity(TIBC),and serum iron and ferritin levels were extracted as instrumental variables for iron parameters from meta-analyses of public genome-wide association studies.Individuals without myocardial infarction history,HF,or LV ejection fraction(LVEF)<50%(n=16,923)in the UK Biobank Cardiovascular Magnetic Resonance Imaging Study constituted the outcome dataset.The dataset included LV end-diastolic volume,LV endsystolic volume,LV mass(LVM),and LVM-to-end-diastolic volume ratio(LVMVR).We used a two-sample bidirectional MR study with inverse variance weighting(IVW)as the primary analysis method and estimation methods using different algorithms to improve the robustness of the results.RESULTS In the IVW analysis,one standard deviation(SD)increased in TSAT significantly correlated with decreased LVMVR(β=-0.1365;95%confidence interval[CI]:-0.2092 to-0.0638;P=0.0002)after Bonferroni adjustment.Conversely,no significant relationships were observed between other iron and LV parameters.After Bonferroni correction,reverse MR analysis showed that one SD increase in LVEF significantly correlated with decreased TSAT(β=-0.0699;95%CI:-0.1087 to-0.0311;P=0.0004).No heterogeneity or pleiotropic effects evidence was observed in the analysis.CONCLUSIONS We demonstrated a causal relationship between TSAT and LV remodeling and function in a preserved ejection fraction population.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFB1804604).
文摘In recent years,network attacks have been characterized by diversification and scale,which indicates a requirement for defense strategies to sacrifice generalizability for higher security.As the latest theoretical achievement in active defense,mimic defense demonstrates high robustness against complex attacks.This study proposes a Function-aware,Bayesian adjudication,and Adaptive updating Mimic Defense(FBAMD)theory for addressing the current problems of existing work including limited ability to resist unknown threats,imprecise heterogeneous metrics,and over-reliance on relatively-correct axiom.FBAMD incorporates three critical steps.Firstly,the common features of executors’vulnerabilities are obtained from the perspective of the functional implementation(i.e,input-output relationships extraction).Secondly,a new adjudication mechanism considering Bayes’theory is proposed by leveraging the advantages of both current results and historical confidence.Furthermore,posterior confidence can be updated regularly with prior adjudication information,which provides mimic system adaptability.The experimental analysis shows that FBAMD exhibits the best performance in the face of different types of attacks compared to the state-of-the-art over real-world datasets.This study presents a promising step toward the theo-retical innovation of mimic defense.
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.
基金funded by Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)。
文摘Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides mining was slow due to lack of reference genome and protein sequence data.In this study,we illustrated full-length transcriptome sequencing to interpret the proteome of CGS meat and obtain 10703 coding DNA sequences.By functional annotation and amino acid composition analysis,we have discovered various genes related to signal transduction,and 16 genes related to longevity.We have also found vast variety of functional peptides through protein coding sequence(CDS)analysis by comparing the data obtained with the functional peptide database.Val-Pro-Ile predicted by the CDS analysis was released from the CGS meat through enzymatic hydrolysis,suggesting that our approach is reliable.This study suggested that transcriptomic analysis can be used as a reference to guide polypeptide mining in CGS meat,thereby providing a powerful mining strategy for the bioresources with unknown genomic and proteomic sequences.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.