期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm 被引量:1
1
作者 陆欣泽 邵桂芳 +2 位作者 许两有 刘暾东 文玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期151-158,共8页
Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically... Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt–Pd–Cu–Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles. 展开更多
关键词 alloy nanoparticle simulated annealing algorithm structural stability SEGREGATION
在线阅读 下载PDF
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
2
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification Principal component analysis simulated annealing genetic algorithm Fuzzy cluster means
在线阅读 下载PDF
Combining deep reinforcement learning with heuristics to solve the traveling salesman problem
3
作者 Li Hong Yu Liu +1 位作者 Mengqiao Xu Wenhui Deng 《Chinese Physics B》 2025年第1期96-106,共11页
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs... Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%. 展开更多
关键词 traveling salesman problem deep reinforcement learning simulated annealing algorithm transformer model whale optimization algorithm
在线阅读 下载PDF
Substation clustering based on improved KFCM algorithm with adaptive optimal clustering number selection 被引量:1
4
作者 Yanhui Xu Yihao Gao +4 位作者 Yundan Cheng Yuhang Sun Xuesong Li Xianxian Pan Hao Yu 《Global Energy Interconnection》 EI CSCD 2023年第4期505-516,共12页
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an... The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution. 展开更多
关键词 Load substation clustering simulated annealing genetic algorithm Kernel fuzzy C-means algorithm Clustering evaluation
在线阅读 下载PDF
Quantum control based on three forms of Lyapunov functions
5
作者 俞国慧 杨洪礼 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期216-222,共7页
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S... This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given. 展开更多
关键词 quantum system Lyapunov function particle swarm optimization simulated annealing algorithms quantum control
在线阅读 下载PDF
考虑混合工艺的自动化码头多设备资源协同调度优化模型和算法设计
6
作者 初良勇 梁冬 +1 位作者 周于佩 章嘉文 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期479-490,共12页
Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the comple... Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals. 展开更多
关键词 Automated terminal Collaborative scheduling Hybrid process simulated annealing particle swarm algorithm UNCERTAINTY Scheduling Solutions
在线阅读 下载PDF
OPTIMIZATION FOR COMBAT CONFIGURATION OF AIR DEFENSE WEAPON SYSTEMS 被引量:3
7
作者 韩松臣 王兴贵 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第1期48-52,共5页
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe... At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field. 展开更多
关键词 air defense missile effectiveness analysis combat configuration simulated annealing algorithm stochastic service system
在线阅读 下载PDF
Energy Harvesting From Sea Waves With Consideration of Airy and JONSWAP Theory and Optimization of Energy Harvester Parameters 被引量:2
8
作者 Hadi Mirab Reza Fathi Vahid Jahangiri Mir Mohammad Ettefagh Reza Hassannejad 《Journal of Marine Science and Application》 CSCD 2015年第4期440-449,共10页
One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electri... One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple Airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power. 展开更多
关键词 energy harvesting sea waves JONSWAP Airy wave model piezoelectric material beam vibration simulated annealing algorithm
在线阅读 下载PDF
Distillation Sequence Optimization Considering Extractive Distillation under Multiple Conditions: A Methanol to Propylene Case Study 被引量:2
9
作者 Yu Jing Qian Feng Wang Jiming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第4期88-93,共6页
This study provides insights into the distillation sequence optimization of refinery system in a methanol to propylene plant with extractive distillation under multiple conditions. The simulated annealing algorithm(SA... This study provides insights into the distillation sequence optimization of refinery system in a methanol to propylene plant with extractive distillation under multiple conditions. The simulated annealing algorithm(SA) with relative cost function was used to solve a meaningful optimization problem. It was observed that different conditions had differed on the flowsheet. Case study shows the effectiveness of the proposed method. 展开更多
关键词 distillation sequence optimization simulated annealing algorithm MATLAB multiple conditions
在线阅读 下载PDF
The design of a photonic crystal filter in the terahertz range 被引量:1
10
作者 赵星星 朱巧芬 张岩 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期2864-2867,共4页
One-dimensional photonic crystal structures for multiple channeled filtering and polarization selective filtering in the terahertz (THz) range are studied theoretically.The design of aperiodic photonic quantum-well ... One-dimensional photonic crystal structures for multiple channeled filtering and polarization selective filtering in the terahertz (THz) range are studied theoretically.The design of aperiodic photonic quantum-well (APQW) structures for multiple channeled filtering and different polarization filtering at arbitrary preassigned frequencies are achieved by using the simulated annealing algorithm with a special merit function. The parameters of these filters can be expediently controlled and the transmission characters are polarization dependent. Numerical simulations show that the designed APQWs can meet the desired specification well. 展开更多
关键词 photonic crystal FILTER simulated annealing algorithm
在线阅读 下载PDF
MULTI-OBJECTIVE PROGRAMMING FOR AIRPORT GATE REASSIGNMENT
11
作者 李军会 陈欣 朱金福 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期209-215,共7页
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro... To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective. 展开更多
关键词 gate assignment multi-objective programming simulated annealing algorithm disruption management
在线阅读 下载PDF
Ant-cycle based on Metropolis rules for the traveling salesman problem
12
作者 龚劬 《Journal of Chongqing University》 CAS 2005年第4期229-232,共4页
In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) ... In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) and AC for the traveling salesman problem (TSP). The Metropolis rules in SA were applied to AC and turned out an improved AC. The computational results obtained from the case study indicated that the improved AC algorithm has advantages over the sheer SA or unmixed AC. 展开更多
关键词 heuristics algorithm simulate annealing algorithm metropolis rules ant colony algorithm ant-cycle algorithm traveling salesman problem (TSP)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部