Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically...Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt–Pd–Cu–Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs...Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%.展开更多
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an...The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.展开更多
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S...This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.展开更多
Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the comple...Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals.展开更多
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electri...One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple Airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.展开更多
This study provides insights into the distillation sequence optimization of refinery system in a methanol to propylene plant with extractive distillation under multiple conditions. The simulated annealing algorithm(SA...This study provides insights into the distillation sequence optimization of refinery system in a methanol to propylene plant with extractive distillation under multiple conditions. The simulated annealing algorithm(SA) with relative cost function was used to solve a meaningful optimization problem. It was observed that different conditions had differed on the flowsheet. Case study shows the effectiveness of the proposed method.展开更多
One-dimensional photonic crystal structures for multiple channeled filtering and polarization selective filtering in the terahertz (THz) range are studied theoretically.The design of aperiodic photonic quantum-well ...One-dimensional photonic crystal structures for multiple channeled filtering and polarization selective filtering in the terahertz (THz) range are studied theoretically.The design of aperiodic photonic quantum-well (APQW) structures for multiple channeled filtering and different polarization filtering at arbitrary preassigned frequencies are achieved by using the simulated annealing algorithm with a special merit function. The parameters of these filters can be expediently controlled and the transmission characters are polarization dependent. Numerical simulations show that the designed APQWs can meet the desired specification well.展开更多
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro...To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.展开更多
In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) ...In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) and AC for the traveling salesman problem (TSP). The Metropolis rules in SA were applied to AC and turned out an improved AC. The computational results obtained from the case study indicated that the improved AC algorithm has advantages over the sheer SA or unmixed AC.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51271156,11474234,and 61403318)the Natural Science Foundation of Fujian Province of China(Grant Nos.2013J01255 and 2013J06002)
文摘Alloy nanoparticles exhibit higher catalytic activity than monometallic nanoparticles, and their stable structures are of importance to their applications. We employ the simulated annealing algorithm to systematically explore the stable structure and segregation behavior of tetrahexahedral Pt–Pd–Cu–Au quaternary alloy nanoparticles. Three alloy nanoparticles consisting of 443 atoms, 1417 atoms, and 3285 atoms are considered and compared. The preferred positions of atoms in the nanoparticles are analyzed. The simulation results reveal that Cu and Au atoms tend to occupy the surface, Pt atoms preferentially occupy the middle layers, and Pd atoms tend to segregate to the inner layers. Furthermore, Au atoms present stronger surface segregation than Cu ones. This study provides a fundamental understanding on the structural features and segregation phenomena of multi-metallic nanoparticles.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72101046 and 61672128)。
文摘Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%.
基金supported by the Planning Special Project of Guangdong Power Grid Co.,Ltd.:“Study on load modeling based on total measurement and discrimination method suitable for system characteristic analysis and calculation during the implementation of target grid in Guangdong power grid”(0319002022030203JF00023).
文摘The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.
基金Project supported by the National Natural Science Foundation of China (Grant No.62176140)。
文摘This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0805309)Natural Science Foundation of Fujian Province(Grant No.2021J01820)Department of Education of Fujian Province Project(Grant Nos.JAT190294 and JAT210230).
文摘Considering the uncertainty of the speed of horizontal transportation equipment,a cooperative scheduling model of multiple equipment resources in the automated container terminal was constructed to minimize the completion time,thus improving the loading and unloading efficiencies of automated container terminals.The proposed model integrated the two loading and unloading processes of“double-trolley quay crane+AGV+ARMG”and“single-trolley quay crane+container truck+ARMG”and then designed the simulated annealing particle swarm algorithm to solve the model.By comparing the results of the particle swarm algorithm and genetic algorithm,the algorithm designed in this paper could effectively improve the global and local space search capability of finding the optimal solution.Furthermore,the results showed that the proposed method of collaborative scheduling of multiple equipment resources in automated terminals considering hybrid processes effectively improved the loading and unloading efficiencies of automated container terminals.The findings of this study provide a reference for the improvement of loading and unloading processes as well as coordinated scheduling in automated terminals.
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
文摘One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple Airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.
文摘This study provides insights into the distillation sequence optimization of refinery system in a methanol to propylene plant with extractive distillation under multiple conditions. The simulated annealing algorithm(SA) with relative cost function was used to solve a meaningful optimization problem. It was observed that different conditions had differed on the flowsheet. Case study shows the effectiveness of the proposed method.
基金Project supported by the National Basic Research Program of China (Grant Nos 2006CB302901 and 2007CB310408)the National Natural Science Foundation of China (Grant Nos 10604042 and 10674038)
文摘One-dimensional photonic crystal structures for multiple channeled filtering and polarization selective filtering in the terahertz (THz) range are studied theoretically.The design of aperiodic photonic quantum-well (APQW) structures for multiple channeled filtering and different polarization filtering at arbitrary preassigned frequencies are achieved by using the simulated annealing algorithm with a special merit function. The parameters of these filters can be expediently controlled and the transmission characters are polarization dependent. Numerical simulations show that the designed APQWs can meet the desired specification well.
基金Supported by the National Natural Science Foundation of China(71103034)the Natural Science Foundation of Jiangsu Province(bk2011084)
文摘To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.
文摘In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) and AC for the traveling salesman problem (TSP). The Metropolis rules in SA were applied to AC and turned out an improved AC. The computational results obtained from the case study indicated that the improved AC algorithm has advantages over the sheer SA or unmixed AC.