期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于SLIC超像素分割的非局部均值船舶图像去噪算法 被引量:1
1
作者 王芝磊 冉鑫 《上海海事大学学报》 北大核心 2024年第2期62-67,共6页
针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过S... 针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。 展开更多
关键词 非局部均值去噪 船舶图像去噪 简单线性迭代聚类(slic) 超像素分割 相似框选择
在线阅读 下载PDF
基于SLIC方法的光照偏强农田图像分割研究 被引量:9
2
作者 陈晓倩 唐晶磊 王栋 《计算机工程与应用》 CSCD 北大核心 2018年第2期177-181,共5页
精准农业是未来农业发展的趋势,而农田图像分割是精准农业的前提与基础。针对光照偏强条件下农田图像高光点区域丢失植物绿色特征对图像分割质量的影响,以SLIC方法和YCrCb颜色空间中的Cg分量为基础,利用不同分类器实现光照偏强条件下农... 精准农业是未来农业发展的趋势,而农田图像分割是精准农业的前提与基础。针对光照偏强条件下农田图像高光点区域丢失植物绿色特征对图像分割质量的影响,以SLIC方法和YCrCb颜色空间中的Cg分量为基础,利用不同分类器实现光照偏强条件下农田图像分割的研究。首先采用SLIC对农田图像进行预处理,获取超像素模块;为避免植物叶面因光照偏强出现高光点区域丢失部分绿色特征,引入YCrCb颜色空间模型中的Cg分量和超绿颜色因子提取特征;为避免监督学习对训练样本要求高,采用半监督学习,将有标签样本和无标签样本进行混合;最后采用不同的分类器进行图像分割,并对实验结果采用混淆矩阵和Kappa系数进行评价。对比实验结果可得,采用距离判别法核函数为diagQuadratic的图像分割效果较其他方法较好,分割正确率较高。 展开更多
关键词 图像分割 不同分类器 简单的线性迭代聚类(slic)方法 Cg分量 光照偏强
在线阅读 下载PDF
基于SLIC分层分割的无人机图像极小目标检测方法 被引量:6
3
作者 赵坤 张羽君 +1 位作者 张建龙 王勇 《数据采集与处理》 CSCD 北大核心 2017年第4期737-745,共9页
针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割... 针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割以确定目标区域,其次利用SLIC方法完成目标精细分割,并采用改进的具有噪声的基于密度的聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)对SLIC分割结果进行超像素聚类,最后提取目标的邻域熵等多种底层特征,使用特征匹配方式检测目标,获取最终检测结果。本文提出了一种全局检测和局部检测相结合的检测策略,极大提高了检测速度。仿真结果表明,本文方法可以有效提高无人机小目标的检测性能,加速检测速度。 展开更多
关键词 无人机 简单线性迭代聚类 具有噪声的基于密度的聚类方法 融合检测策略
在线阅读 下载PDF
基于SLIC的改进GrabCut彩色图像快速分割 被引量:15
4
作者 胡志立 郭敏 《计算机工程与应用》 CSCD 北大核心 2016年第2期186-190,270,共6页
GrabCut算法用户交互量少且分割精度高,但它迭代使用GraphCuts的求解模式使得在处理高分辨率图像时,耗时巨大。提出了一种快速GrabCut算法,在高斯混合模型参数估计过程中,通过SLIC算法构建精简的GraphCuts模型以实现加速。通过SLIC算法... GrabCut算法用户交互量少且分割精度高,但它迭代使用GraphCuts的求解模式使得在处理高分辨率图像时,耗时巨大。提出了一种快速GrabCut算法,在高斯混合模型参数估计过程中,通过SLIC算法构建精简的GraphCuts模型以实现加速。通过SLIC算法将原始图像快速地预分割成具有确定边界且区域内相似度高的超像素图,并以此构建精简的网络图。以块内的RGB均值描述超像素特征进行高斯混合模型参数估计。为了提高分割精度,使用得到的GMM参数对原始图像进行分割。实验结果证明了该算法在时效和精度上都有很好的性能。 展开更多
关键词 简单线性迭代聚类(slic) 图割 高斯混合模型
在线阅读 下载PDF
基于SLIC和主动学习的高光谱遥感图像分类方法 被引量:8
5
作者 赵鹏飞 周绍光 +1 位作者 裔阳 胡屹群 《计算机工程与应用》 CSCD 北大核心 2017年第3期183-187,225,共6页
在主动学习的基础上,提出一种基于SLIC的高光谱遥感图像主动分类方法。首先提取图像纹理特征并与光谱特征融合,使用PCA对新数据进行降维,取前三个主成分构成假彩色图像,然后使用SLIC处理该图像获得超像素;接着随机抽取定量超像素作为初... 在主动学习的基础上,提出一种基于SLIC的高光谱遥感图像主动分类方法。首先提取图像纹理特征并与光谱特征融合,使用PCA对新数据进行降维,取前三个主成分构成假彩色图像,然后使用SLIC处理该图像获得超像素;接着随机抽取定量超像素作为初始训练样本,样本光谱信息为超像素样本中所有像素点的光谱信息均值,样本标签为超像素中出现次数最多的类别;然后通过主动学习得到SVM分类器;最后使用分类器对超像素分类得到其类别,并将超像素类别赋予其包含的像素点,从而达到高光谱遥感图像分类的目的。实验表明:该方法明显降低了主动学习过程的时间消耗,有效地提高了分类效果,其OA,AA和Kappa值显著优于未使用SLIC的主动学习方法。 展开更多
关键词 主动学习 超像素 主成分分析(PCA) 简单线性迭代聚类(slic) 支持向量机(SVM)分类器
在线阅读 下载PDF
基于SLIC与Delaunay图割的交互式图像分割算法 被引量:1
6
作者 蔡强 刘亚奇 +2 位作者 曹健 毛典辉 李海生 《计算机科学与探索》 CSCD 北大核心 2015年第4期482-490,共9页
针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多... 针对现有的交互式图像分割算法在处理高分辨率图像时仍不够高效的问题,提出了一种基于简单线性迭代聚类(simple linear iterative clustering,SLIC)与Delaunay图割的交互式图像分割算法。使用一种简化但是高效的SLIC算法将图像分割为多个在感知上有意义的原子区域,并提取这些区域的代表像素点;对处在背景矩形框内的代表像素点进行Delaunay三角剖分,构建图结构;最后利用最小割最大流算法将图中的节点分为两部分,并将这些节点对应为相应的原子区域,达到将图像分割为前景和背景的目的。与其他交互式图像分割算法进行实验对比,结果表明所提算法在计算效率上有较大提升,并更为准确。 展开更多
关键词 图像分割 简单线性迭代聚类(slic) DELAUNAY三角剖分 最小割最大流
在线阅读 下载PDF
基于SLIC和改进区域生长的非结构化道路识别 被引量:1
7
作者 谢习华 王刚 +1 位作者 辛涛 赵喻明 《计算机工程与应用》 CSCD 北大核心 2022年第14期210-218,共9页
非结构化道路一般没有车道标识线且道路边界模糊,区分道路区域与背景区域难度较大。针对现有非结构化道路识别方法存在全像素域计算分类处理实时性差、易受噪声数据干扰等问题,提出一种基于SLIC(simple lineariterativeclustering)超像... 非结构化道路一般没有车道标识线且道路边界模糊,区分道路区域与背景区域难度较大。针对现有非结构化道路识别方法存在全像素域计算分类处理实时性差、易受噪声数据干扰等问题,提出一种基于SLIC(simple lineariterativeclustering)超像素分割和改进区域生长算法的非结构化道路识别方法。利用均匀化初始聚类中心的SLIC算法生成低分辨率超像素特征图。在此基础上,利用聚类算法与邻域搜索算法自适应选择种子点,并引入CIEDE2000色差理论作为区域生长法生长准则,初步确定道路区域。根据道路连续一致特点,优化超像素级生长图并映射轮廓区域至原图,获得道路最终区域。基于数据集及真实场景的实验结果表明,该方法具有较高的识别率和抗干扰能力。 展开更多
关键词 非结构化道路 简单线性迭代聚类(slic) 超像素特征图 CIEDE2000 区域生长算法
在线阅读 下载PDF
基于SLIC的GrabCut减小姿态搜索空间算法
8
作者 朱珏钰 袁紫华 +1 位作者 李峰 周书仁 《计算机工程》 CAS CSCD 北大核心 2016年第8期266-270,共5页
针对人体的高自由度导致姿态估计过程中搜索空间过大的问题,提出一种基于简单线性迭代聚类(SLIC)超像素算法的Grab Cut减小姿态空间算法。运用SLIC算法对图像进行超像素分割,以超像素作为s-t图中的节点构建图模型,利用超像素区域的颜色... 针对人体的高自由度导致姿态估计过程中搜索空间过大的问题,提出一种基于简单线性迭代聚类(SLIC)超像素算法的Grab Cut减小姿态空间算法。运用SLIC算法对图像进行超像素分割,以超像素作为s-t图中的节点构建图模型,利用超像素区域的颜色特征平均值作为该区域内每个像素的特征值,分别为前景和背景超像素建立混合高斯模型,迭代更新高斯参数,运用最小割算法完成前景提取,并在得到的前景区域中进行后续的姿态估计。实验结果表明,基于SLIC的Grab Cut与基于Grab Cut的减小搜索空间算法在运行时间和姿态估计准确度上均有较大程度提升。 展开更多
关键词 人体姿态估计 姿态搜索空间 超像素 简单线性迭代聚类算法 GRAB Cut算法
在线阅读 下载PDF
基于城区特征和SLIC的简缩极化SAR分类方法
9
作者 尹嫱 徐洁 《雷达科学与技术》 北大核心 2021年第5期583-588,597,共7页
简缩极化SAR作为一种特殊的双极化模式,可以获取较为全面的极化信息,同时也能获得较大的成像幅宽,近年来得到了研究人员的关注。但以往基于极化度的分解方法存在体散射过估计的问题,导致分解与分类的结果在城区部分,尤其是大方位角城区... 简缩极化SAR作为一种特殊的双极化模式,可以获取较为全面的极化信息,同时也能获得较大的成像幅宽,近年来得到了研究人员的关注。但以往基于极化度的分解方法存在体散射过估计的问题,导致分解与分类的结果在城区部分,尤其是大方位角城区部分表现一般。本文采用基于城区描述子的简缩极化分解方法,将分解获取的特征进行Wishart迭代分类,同时利用SLIC算法进行超像素分割,在超像素区域内进行类别合并,从而改善分类效果。实验采用Radarsat-2旧金山区域的全极化数据仿真合成CTLR模式及π/4模式的简缩极化数据验证了算法的可行性,实验表明,对于两种模式,本文方法在小方位角城区分类精度提高约20%,大方位角城区分类精度提高约10%。 展开更多
关键词 简缩极化SAR 简缩极化分解 无监督分类 超像素分割
在线阅读 下载PDF
基于区域再分割的改进型SLIC超像素生成算法 被引量:1
10
作者 颜雨 孙尽尧 《激光杂志》 北大核心 2016年第8期129-133,共5页
超像素能够提高图像分割算法的计算效率,是图像更具视觉意义的一种描述,关于超像素分割算法的研究一直是当下研究的热点。流行的SLIC超像素生成算法在细节丰富区域容易产生欠分割的超像素,影响图像处理的后续步骤。为改进SLIC算法的不足... 超像素能够提高图像分割算法的计算效率,是图像更具视觉意义的一种描述,关于超像素分割算法的研究一直是当下研究的热点。流行的SLIC超像素生成算法在细节丰富区域容易产生欠分割的超像素,影响图像处理的后续步骤。为改进SLIC算法的不足,改进型的算法通过对检测欠分割区域,并在其中添加新聚类中心来修正欠分割。该方法能够保留原始SLIC算法的分割结果,只在欠分割区域进行处理,从而得到更精确的超像素结果并且不对原先使用SLIC算法的应用产生大的影响。通过实验与原始SLIC算法对比,该改进型算法的各项评价指标均优于SLIC算法,且运行效率相差无几,能够为图像的进一步处理提供更好的基础。 展开更多
关键词 超像素 图像处理 图像分割 简单线性迭代聚类 K均值聚类
在线阅读 下载PDF
基于SLIC和区域生长的目标分割算法 被引量:16
11
作者 韩纪普 段先华 常振 《计算机工程与应用》 CSCD 北大核心 2021年第1期213-218,共6页
传统区域生长算法的分割结果依赖于种子点的选取,且图像自身的噪声以及灰度值不均匀等问题易在分割目标过程中形成分割空洞,针对以上问题提出了基于超像素的改进区域生长算法。采用拉普拉斯锐化,增强待分割目标边界,之后根据像素灰度相... 传统区域生长算法的分割结果依赖于种子点的选取,且图像自身的噪声以及灰度值不均匀等问题易在分割目标过程中形成分割空洞,针对以上问题提出了基于超像素的改进区域生长算法。采用拉普拉斯锐化,增强待分割目标边界,之后根据像素灰度相似的特征采用SLIC(简单线性迭代聚类算法)超像素分割将原始图像分割成若干不规则区域,建立不规则区域间的无向加权图,选取种子区域,根据无向加权图以分割好的不规则区域为单位进行区域生长,最后在分割目标边缘处以像素为单位做区域生长,细化边界。对比于传统区域生长算法,改进后的算法在分割结果上受种子点选取影响较小,且能有效地解决分割空洞等问题。对比于聚类分割,Otsu(最大类间方差)阈值分割法等典型算法,该算法在分割精度上具有明显优势。 展开更多
关键词 拉普拉斯锐化 简单线性迭代聚类算法(slic) 区域生长 目标分割
在线阅读 下载PDF
融合纹理信息的SLIC算法在医学图像中的研究 被引量:8
12
作者 侯向丹 李柏岑 +3 位作者 刘洪普 杜佳卓 郑梦敬 于铁忠 《自动化学报》 EI CSCD 北大核心 2019年第5期965-974,共10页
随着超像素算法的发展, SLIC (Simple linear iterative clustering)由于时间复杂度低及良好的分割结果而被广泛关注.但是由于传统的SLIC算法并没有考虑到图像的纹理信息,故而对于纹理较复杂的图像分割效果略有不足. LBP (Local binary ... 随着超像素算法的发展, SLIC (Simple linear iterative clustering)由于时间复杂度低及良好的分割结果而被广泛关注.但是由于传统的SLIC算法并没有考虑到图像的纹理信息,故而对于纹理较复杂的图像分割效果略有不足. LBP (Local binary pattern)对于纹理的识别有着优秀的表现而且时间复杂度低,但是对于噪声的鲁棒性较差,并且会产生纹理偏移.因此,本文首先针对传统的LBP中存在的问题进行改进;然后将改进后的算法与SLIC结合,提出一种融合纹理信息的超像素算法—SLICT (Simple linear iterative clustering based on texture).为验证分割效果,本文选取纹理较多的医学图像进行实验,采用心脏MRI数据库进行验证并与其他超像素算法进行对比.实验表明, SLICT在边缘召回率、欠分割错误率以及覆盖率上的综合表现优于其他算法.从分割结果上来看, SLICT不但能够更好地贴合图像边缘,而且对于连续区域的分割效果也较好,更适合纹理较复杂的图像. 展开更多
关键词 纹理偏移 slic LBP 医学图像 超像素
在线阅读 下载PDF
基于综合辨识信息的SLIC超像素分割算法 被引量:9
13
作者 陈莹莹 康艳 +1 位作者 李文法 宏晨 《高技术通讯》 CAS 2021年第8期816-823,共8页
简单线性迭代聚类算法(SLIC)作为目前主流的基于聚类的超像素分割算法,能产生形状规整的超像素,但是边界附着度不高,针对以上问题本文提出了基于综合辨识信息的SLIC超像素分割算法。该算法首先调整种子点的初始化选取方式,计算像素梯度... 简单线性迭代聚类算法(SLIC)作为目前主流的基于聚类的超像素分割算法,能产生形状规整的超像素,但是边界附着度不高,针对以上问题本文提出了基于综合辨识信息的SLIC超像素分割算法。该算法首先调整种子点的初始化选取方式,计算像素梯度值,扩大初始聚类中心的选取范围。其次在距离度量时,加入像素的边缘概率,以权重的方式加入到距离公式中,减少了像素的误分割现象。实验结果表明,本文方法与SLIC算法相比,在分割质量方面有明显提升;同时与其他几种算法相比,本文提出的算法可以有效地提高超像素的边界附着度,同时降低像素的分割错误率。 展开更多
关键词 超像素分割 聚类 简单线性迭代聚类(slic) 辨识信息
在线阅读 下载PDF
融合简单线性迭代聚类的高光谱混合像元分解策略 被引量:4
14
作者 张飞飞 孙旭 +2 位作者 薛良勇 高连如 刘长星 《农业工程学报》 EI CAS CSCD 北大核心 2015年第17期199-206,共8页
高光谱图像中的混合像元问题广泛存在,混合像元的分解效率一直是遥感应用研究的难点和热点。目前成熟的端元提取算法有纯像元指数(pure pixel index,PPI)、内部最大体积法(N-FINDR)、顶点成分分析(vertex component analysis,VCA... 高光谱图像中的混合像元问题广泛存在,混合像元的分解效率一直是遥感应用研究的难点和热点。目前成熟的端元提取算法有纯像元指数(pure pixel index,PPI)、内部最大体积法(N-FINDR)、顶点成分分析(vertex component analysis,VCA)、顺序最大角凸锥(sequential maximum angle convex cone,SMACC)、交替最大体积法(alternating volume maximization,AVMAX)、最小体积封闭单形体(minimum volume enclosing simplex,MVES)等,这些算法从图像所有像元中提取纯光谱,具有提取速度慢、精度不高的缺点。为此,该文引入了一种融合简单线性迭代聚类(simple linear iterative clustering,SLIC)超像元分割的高光谱混合像元分解算法。超像元分割技术能够将具有相似特征的相邻像元组成图像块,并保留进一步进行图像处理的有效信息,从而大幅减少参与端元提取的像元数量,为解决上述问题提供了有效的途径。通过试验对比了降维方式(主成分分析和最大噪声分数)、RGB对应关系(6种)、色彩空间RGB(red,green,blue)和LAB(lightness-A-B)、数据格式(JPG,BIN)和算法参数K对高光谱图像超像元分割结果的影响,并进一步分析了SLIC超像元分割结果对2种典型端元提取算法(AVMAX、MVES)产生的不同效果。试验结果表明,随着K值的增大,混合像元分解的时间逐渐增加,均方根误差(root mean square error,RMSE)持平或减少,而JPG(有损压缩)数据格式的时间始终比BIN(无损压缩)数据格式的要短。SLIC+MVES的RMSE略高于MVES的RMSE,低于AVMAX的RMSE,但时间远小于MVES。当K足够大的时候,SLIC+MVES的效果就近似MVES的效果了。在大部分情况下,最大噪声分数的降维效果优于主成分分析。以最大噪声分数作为降维方法、以JPG作为数据格式、以LAB作为色彩空间对混合像元分解结果较为有利。另外,SLIC的参数K的取值在5-10之间较为合适。该研究中的SLIC超像元分割算法简单易行,并且提高了混合像元分解的效率,具备很好的实用价值。 展开更多
关键词 像元 光谱分析 算法 简单线性迭代聚类 超像元
在线阅读 下载PDF
基于RealSense深度相机的多特征树干快速识别方法 被引量:9
15
作者 沈跃 庄珍珍 +2 位作者 刘慧 姜建滨 欧鸣雄 《农业机械学报》 EI CAS CSCD 北大核心 2022年第4期304-312,共9页
针对农业机器人在果园定位和导航中,环境背景复杂、光照强度变化大等问题,本文提出了一种基于RGB-D相机并利用颜色、深度、宽度和平行边特征的树干快速识别方法。首先,使用RealSense深度相机获取果园的彩色图像和深度数据;然后,将彩色... 针对农业机器人在果园定位和导航中,环境背景复杂、光照强度变化大等问题,本文提出了一种基于RGB-D相机并利用颜色、深度、宽度和平行边特征的树干快速识别方法。首先,使用RealSense深度相机获取果园的彩色图像和深度数据;然后,将彩色图像转换为HSV颜色空间,再对HSV颜色空间中的S分量进行超像素分割,并将颜色特征和深度特征相近的相邻超像素块进行合并;随后,对深度图像进行树干宽度特征检测,对宽度置信率大于阈值的物体看作是待处理物体;最后,对待处理的物体进行平行边特征检测,在待处理物体边缘区域选择感兴趣区域窗口(ROI)进行边缘检测,搜索可能的树干边缘直边,当物体边缘的置信率R_(B)大于设定的阈值T_(LB)时,则识别为树干。通过对树干的多特征提取,有效提高了在不同环境下树干识别准确率。利用移动机器人平台在果园环境进行试验测试,以检验在强光照、正常光照和弱光照条件下树干识别算法的性能。试验结果表明,本文的树干识别算法在强光照、正常光照和弱光照条件下,树干识别的准确率分别为92.38%、91.35%和89.86%,每帧图像平均耗时分别为0.54、0.66、0.76 s,能够稳定且快速地实现果园环境下树干识别作业。 展开更多
关键词 树干识别 深度相机 光照强度 多特征 简单线性迭代聚类算法
在线阅读 下载PDF
基于自适应超像素分割的点刻式DPM区域定位算法研究 被引量:4
16
作者 王娟 王萍 王港 《自动化学报》 EI CSCD 北大核心 2015年第5期991-1003,共13页
为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利... 为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性. 展开更多
关键词 超像素 自适应边缘简单线性迭代聚类算法 谱聚类 精确定位
在线阅读 下载PDF
一种由粗至精的RGB-D室内场景语义分割方法 被引量:8
17
作者 刘天亮 冯希龙 +2 位作者 顾雁秋 戴修斌 罗杰波 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期681-687,共7页
为了标注室内场景中可见物体,提出一种基于RGB-D数据由粗至精的室内场景语义分割方法.首先,利用分层显著度导引的简单线性迭代聚类过分割和鲁棒多模态区域特征,构建面向语义类别的超像素区域池,基于随机决策森林分类器判决各个超像素区... 为了标注室内场景中可见物体,提出一种基于RGB-D数据由粗至精的室内场景语义分割方法.首先,利用分层显著度导引的简单线性迭代聚类过分割和鲁棒多模态区域特征,构建面向语义类别的超像素区域池,基于随机决策森林分类器判决各个超像素区域的语义类别,实现粗粒度区域级语义标签推断.然后,为了改善粗粒度级的语义标签,利用几何深度导引和内部反馈机制改进像素级稠密全连接条件随机场模型,以求精细粒度像素级语义标注.最后,在粗、细粒度语义标注之间引入全局递归式反馈,渐进式迭代更新室内场景的语义类别标签.2个公开的RGBD室内场景数据集上的实验结果表明,与其他方法相比,所提出的语义分割方法无论在主观还是客观评估上,均具有较好的效果. 展开更多
关键词 RGB-D室内场景 语义分割 slic过分割 稠密CRFs 递归式反馈
在线阅读 下载PDF
结合显著性和超像素改进的GrabCut图像分割 被引量:9
18
作者 刘辉 石小龙 《红外技术》 CSCD 北大核心 2018年第1期55-61,共7页
Grab Cut是一种快捷准确的交互式图像分割方法。但是,当待处理图像复杂度较大时,用户很难有效的标注矩形框,而且运算时间较长。针对以上问题,提出了一种改进的Grab Cut算法。该算法通过视觉显著性实现矩形框的自动标注,与超像素的结合... Grab Cut是一种快捷准确的交互式图像分割方法。但是,当待处理图像复杂度较大时,用户很难有效的标注矩形框,而且运算时间较长。针对以上问题,提出了一种改进的Grab Cut算法。该算法通过视觉显著性实现矩形框的自动标注,与超像素的结合有效的减少了分割算法的时间。首先,通过一种结合改进超像素的流形排序算法来得到显著性图,并进一步得到目标的矩形框,然后用改进的超像素来构建Grab Cut图割模型,最后,进行参数迭代估计从而得到分割图像。实验表明,本文提出的方法在保证Grab Cut算法精度的前提下,实现了自动分割,并有效的减少了分割时间。 展开更多
关键词 GRABCUT 简单线性迭代聚类 显著性检测 流形排序
在线阅读 下载PDF
基于超像素和改进迭代图割算法的图像分割 被引量:6
19
作者 戴庆焰 朱仲杰 +1 位作者 段智勇 李伟杰 《计算机工程》 CAS CSCD 北大核心 2016年第7期220-226,共7页
基于经典的图割(Graph cut)理论,提出一种基于超像素和改进Graph cut算法的图像分割算法。采用改进简单线性迭代聚类算法,得到前景边缘信息保存较完整的超像素图像。以超像素为处理单元,通过融合颜色、梯度等信息重建能量函数,并基于Gra... 基于经典的图割(Graph cut)理论,提出一种基于超像素和改进Graph cut算法的图像分割算法。采用改进简单线性迭代聚类算法,得到前景边缘信息保存较完整的超像素图像。以超像素为处理单元,通过融合颜色、梯度等信息重建能量函数,并基于Graph cut框架进行分割。仿真结果显示,与Grabcut算法相比,改进算法不仅具有更高的分割精度,提取的目标边缘较完整、光滑,而且大幅提升了分割效率。 展开更多
关键词 图像分割 改进迭代图割算法 简单线性迭代聚类算法 超像素 能量函数
在线阅读 下载PDF
复杂扰动背景下时空特征动态融合的视频显著性检测 被引量:4
20
作者 陈昶安 吴晓峰 +1 位作者 王斌 张立明 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第5期802-812,共11页
现有的运动目标显著性提取算法对具有树枝摇晃、水波荡漾等复杂扰动背景的视频处理效果较差,无法排除背景对显著目标提取的干扰.针对此类视频,提出一种基于时空显著性信息动态融合的目标提取算法.在空间上,利用简单线性迭代聚类(SLIC)... 现有的运动目标显著性提取算法对具有树枝摇晃、水波荡漾等复杂扰动背景的视频处理效果较差,无法排除背景对显著目标提取的干扰.针对此类视频,提出一种基于时空显著性信息动态融合的目标提取算法.在空间上,利用简单线性迭代聚类(SLIC)超像素分割算法计算重建误差,得到每帧图像上完整的显著目标;在时间上,考虑到显著目标内部各像素具有运动一致性的特点,利用连续多帧图像的运动估计引入运动熵来表征,同时利用中心周边差的机制来区分目标和背景的运动;最后由于人的视觉系统对运动信息更敏感,根据时间显著性的大小设置动态权重进行时空显著性融合,得到最终能兼顾动静两种情况的视频显著图.在4个视频数据库上的实验结果表明,该方法能够较好地抑制复杂扰动背景对于运动显著目标提取的干扰,优于对比方法. 展开更多
关键词 复杂扰动背景 简单线性迭代聚类 运动显著性 运动一致性 运动熵 动态融合
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部