运用Mawhin重合度理论,讨论一类半直线上三阶多点边值问题(q(t)x″(t))′=f(t,x(t),x′(t),x″(t)),a.e.t∈[0,+∞);■(η■在dim Ker L=2共振情形下的可解性,获得了该边值问题至少存在一个解的充分条件.这里f:[0,1]×R^(3)→R满足L...运用Mawhin重合度理论,讨论一类半直线上三阶多点边值问题(q(t)x″(t))′=f(t,x(t),x′(t),x″(t)),a.e.t∈[0,+∞);■(η■在dim Ker L=2共振情形下的可解性,获得了该边值问题至少存在一个解的充分条件.这里f:[0,1]×R^(3)→R满足L^(1)[0,+∞)-Carathéodory条件,αi,βj∈R(1≤i≤m,1≤j≤n),0<ξ_(1)<ξ_(2)<…<ξ_(m)<+∞,0<η_(1)<η_(2)<…<η_(n)<+∞(m,n∈Z+),q(t)>0,q(t)∈C[0,+∞)∩C^(2)(0,+∞),1/q(t)∈L^(1)[0,+∞).展开更多
该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C...该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C([0,1],[0,∞)),f∈C([0,∞),[0,∞)).展开更多
文摘运用Mawhin重合度理论,讨论一类半直线上三阶多点边值问题(q(t)x″(t))′=f(t,x(t),x′(t),x″(t)),a.e.t∈[0,+∞);■(η■在dim Ker L=2共振情形下的可解性,获得了该边值问题至少存在一个解的充分条件.这里f:[0,1]×R^(3)→R满足L^(1)[0,+∞)-Carathéodory条件,αi,βj∈R(1≤i≤m,1≤j≤n),0<ξ_(1)<ξ_(2)<…<ξ_(m)<+∞,0<η_(1)<η_(2)<…<η_(n)<+∞(m,n∈Z+),q(t)>0,q(t)∈C[0,+∞)∩C^(2)(0,+∞),1/q(t)∈L^(1)[0,+∞).
文摘该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C([0,1],[0,∞)),f∈C([0,∞),[0,∞)).