To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ...To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.展开更多
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane(CL-20)by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants.In this study,we synthesi...Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane(CL-20)by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants.In this study,we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film(NCS)and emphatically studied the thermal decomposition performance of the composite structure.Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure.The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS.These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20.Among the tested samples,NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20.Moreover,the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process.And a possible catalytic mechanism was proposed.The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS.This work may promote the extensive use of CL-20 in the field of solid rocket propellant.展开更多
基金National Natural Science Foundation of China(No.22275150)。
文摘To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.
基金supported by the National Natural Science Foundation of China(No:21975227)the Shanxi Province Graduate Student Innovation Project(No:2020SY403)。
文摘Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane(CL-20)by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants.In this study,we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film(NCS)and emphatically studied the thermal decomposition performance of the composite structure.Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure.The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS.These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20.Among the tested samples,NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20.Moreover,the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process.And a possible catalytic mechanism was proposed.The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS.This work may promote the extensive use of CL-20 in the field of solid rocket propellant.