A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electri...A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.展开更多
碳化硅金属氧化物半导体场效应管(Si C MOSFET)和氮化镓高电子迁移率晶体管(GaN HEMT)这两种器件内部存在容易捕获电子的"陷阱",会影响导电沟道的性能,进而影响器件的导通电阻。对SiC MOSFET和GaN HEMT各选取了一款典型的商...碳化硅金属氧化物半导体场效应管(Si C MOSFET)和氮化镓高电子迁移率晶体管(GaN HEMT)这两种器件内部存在容易捕获电子的"陷阱",会影响导电沟道的性能,进而影响器件的导通电阻。对SiC MOSFET和GaN HEMT各选取了一款典型的商用器件,分别对Si C MOSFET和GaN HEMT的导通电阻可靠性进行了测试。测试结果表明,Si C MOSFET的导通电阻变化量相对小,且应力停止后导通电阻可以恢复到初始状态,这说明其界面态陷阱密度比GaN HEMT更低,因此实际应用中无需考虑导通电阻的稳定性;而GaN HEMT的动态电阻变化较大,这极大地增加了导通损耗,影响系统的可靠性,因此在实际应用中需要考虑导通电阻变化对导通性能的影响。展开更多
优化设计了电力系统用6.5 kV SiC MOSFET,测得该器件的导通电流为25 A,阻断电压为6800 V,器件的巴利加优值(BFOM)达到925 MW/cm^(2)。基于感性负载测试电路测试了器件的高压开关瞬态波形。在此基础上,借助仿真软件构建6.5 kV SiC MOSFE...优化设计了电力系统用6.5 kV SiC MOSFET,测得该器件的导通电流为25 A,阻断电压为6800 V,器件的巴利加优值(BFOM)达到925 MW/cm^(2)。基于感性负载测试电路测试了器件的高压开关瞬态波形。在此基础上,借助仿真软件构建6.5 kV SiC MOSFET芯片级和器件级仿真模型,通过改变器件元胞结构、阱区掺杂浓度、栅极电阻、寄生电感等参数,研究了6.5 kV SiC MOSFET开关瞬态过程和电学振荡影响因素。结果表明,减小结型场效应晶体管(JFET)宽度有利于提高器件dV/dt能力,而源极寄生电感和栅极电阻是引起栅极电压振荡的重要因素。研究结果有助于分析研究6.5 kV SiC MOSFET在智能电网应用中的开关特性,使得基于SiC MOSFET的功率变换器系统具有更低的损耗、更高的频率和更高的可靠性。展开更多
Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor ...Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor (PMOSFET), analytical expressions of the threshold voltages for buried channel and surface channel are presented. And the maximum allowed thickness of s-Si is given, which can ensure that the strong inversion appears earlier in the buried channel (compressive strained SiGe) than in the surface channel (tensile strained Si), because the hole mobility in the buried channel is higher than that in the surface channel. Thus they offer a good accuracy as compared with the results of device simulator ISE. With this model, the variations of threshold voltage and maximum allowed thickness of s-Si with design parameters can be predicted, such as Ge fraction, layer thickness, and doping concentration. This model can serve as a useful tool for p-channel s-Si/s-SiGe/Si1-yGey metal-oxide-semiconductor field-effect transistor (MOSFET) designs.展开更多
SiC金属-氧化物-半导体场效应晶体管(MOSFET)作为车用电机控制器功率单元的核心器件,其并联不均流问题是影响电机控制器安全稳定运行的关键因素。对于热增强塑料封装(TPAK)SiC MOSFET功率模块实际应用中的不均流问题,首先通过理论推导...SiC金属-氧化物-半导体场效应晶体管(MOSFET)作为车用电机控制器功率单元的核心器件,其并联不均流问题是影响电机控制器安全稳定运行的关键因素。对于热增强塑料封装(TPAK)SiC MOSFET功率模块实际应用中的不均流问题,首先通过理论推导和仿真,对影响SiC并联均流的器件参数、功率回路参数、驱动回路参数进行了全面的分析总结。然后结合仿真结果对电机控制器进行均流优化设计,其中包括对TPAK SiC MOSFET进行测试、筛选和分析,减小器件参数分散性的影响;基于器件开关特性,对功率模块的驱动回路采用单驱动器多推挽结构,减小驱动回路对并联均流的影响;设计了一种叠层母排结构,在ANSYS Q3D中提取到功率回路寄生电感为9.649 nH,采用ANSYS Q3D和Simplorer进行联合双脉冲仿真,电流不均衡度小于3%。最后,进行了电机控制器样机的试制及测试,实际测试结果表明电流不均衡度小于5%,验证了在车用电机控制器应用中TPAK SiC MOSFET模块均流设计的可行性。展开更多
Ultra-low power transceiver design is proposed for wireless sensor node used in the wireless sensor network(WSN).Typically,each sensor node contains a transceiver so it is required that both hardware and software de...Ultra-low power transceiver design is proposed for wireless sensor node used in the wireless sensor network(WSN).Typically,each sensor node contains a transceiver so it is required that both hardware and software designs of WSN node must take care of energy consumption during all modes of operation including active/sleep modes so that the operational life of each node can be increased in order to increase the lifetime of network.The current declared size of the wireless sensor node is of millimeter order,excluding the power source and crystal oscillator.We have proposed a new 2.4 GHz transceiver that has five blocks namely XO,PLL,PA,LNA and IF.The proposed transceiver incorporates less number of low-drop outs(LDOs)regulators.The size of the transceiver is reduced by decreasing the area of beneficiary components up to 0.41 mm;of core area in such a way that some functions are optimally distributed among other components.The proposed design is smaller in size and consumes less power,<1 mW,compared to other transceivers.The operating voltage has also been reduced to 1 V.This transceiver is most efficient and will be fruitful for the wireless networks as it has been designed by considering modern requirements.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61404110)the National Higher-education Institution General Research and Development Project,China(Grant No.2682014CX097)
文摘A power metal-oxide-semiconductor field-effect transistor(MOSFET) with dielectric trench is investigated to enhance the reversed blocking capability. The dielectric trench with a low permittivity to reduce the electric field at reversed blocking state has been studied. To analyze the electric field, the drift region is segmented into four regions, where the conformal mapping method based on Schwarz–Christoffel transformation has been applied. According to the analysis, the improvement in the electric field for using the low permittivity trench is mainly due to the two electric field peaks generated in the drift region around this dielectric trench. The analytical results of the electric field and the potential models are in good agreement with the simulation results.
文摘碳化硅金属氧化物半导体场效应管(Si C MOSFET)和氮化镓高电子迁移率晶体管(GaN HEMT)这两种器件内部存在容易捕获电子的"陷阱",会影响导电沟道的性能,进而影响器件的导通电阻。对SiC MOSFET和GaN HEMT各选取了一款典型的商用器件,分别对Si C MOSFET和GaN HEMT的导通电阻可靠性进行了测试。测试结果表明,Si C MOSFET的导通电阻变化量相对小,且应力停止后导通电阻可以恢复到初始状态,这说明其界面态陷阱密度比GaN HEMT更低,因此实际应用中无需考虑导通电阻的稳定性;而GaN HEMT的动态电阻变化较大,这极大地增加了导通损耗,影响系统的可靠性,因此在实际应用中需要考虑导通电阻变化对导通性能的影响。
文摘优化设计了电力系统用6.5 kV SiC MOSFET,测得该器件的导通电流为25 A,阻断电压为6800 V,器件的巴利加优值(BFOM)达到925 MW/cm^(2)。基于感性负载测试电路测试了器件的高压开关瞬态波形。在此基础上,借助仿真软件构建6.5 kV SiC MOSFET芯片级和器件级仿真模型,通过改变器件元胞结构、阱区掺杂浓度、栅极电阻、寄生电感等参数,研究了6.5 kV SiC MOSFET开关瞬态过程和电学振荡影响因素。结果表明,减小结型场效应晶体管(JFET)宽度有利于提高器件dV/dt能力,而源极寄生电感和栅极电阻是引起栅极电压振荡的重要因素。研究结果有助于分析研究6.5 kV SiC MOSFET在智能电网应用中的开关特性,使得基于SiC MOSFET的功率变换器系统具有更低的损耗、更高的频率和更高的可靠性。
基金Project supported by the National Defence Pre-research Foundation of China (Grant Nos. 51308040203,9140A08060407DZ0103,and 6139801)
文摘Based on the analysis of vertical electric potential distribution across the dual-channel strained p-type Si/strained Si1-xGex/relaxd Si1-yGey(s-Si/s-SiGe/Si1-yGey) metal-oxide-semiconductor field-effect transistor (PMOSFET), analytical expressions of the threshold voltages for buried channel and surface channel are presented. And the maximum allowed thickness of s-Si is given, which can ensure that the strong inversion appears earlier in the buried channel (compressive strained SiGe) than in the surface channel (tensile strained Si), because the hole mobility in the buried channel is higher than that in the surface channel. Thus they offer a good accuracy as compared with the results of device simulator ISE. With this model, the variations of threshold voltage and maximum allowed thickness of s-Si with design parameters can be predicted, such as Ge fraction, layer thickness, and doping concentration. This model can serve as a useful tool for p-channel s-Si/s-SiGe/Si1-yGey metal-oxide-semiconductor field-effect transistor (MOSFET) designs.
文摘SiC金属-氧化物-半导体场效应晶体管(MOSFET)作为车用电机控制器功率单元的核心器件,其并联不均流问题是影响电机控制器安全稳定运行的关键因素。对于热增强塑料封装(TPAK)SiC MOSFET功率模块实际应用中的不均流问题,首先通过理论推导和仿真,对影响SiC并联均流的器件参数、功率回路参数、驱动回路参数进行了全面的分析总结。然后结合仿真结果对电机控制器进行均流优化设计,其中包括对TPAK SiC MOSFET进行测试、筛选和分析,减小器件参数分散性的影响;基于器件开关特性,对功率模块的驱动回路采用单驱动器多推挽结构,减小驱动回路对并联均流的影响;设计了一种叠层母排结构,在ANSYS Q3D中提取到功率回路寄生电感为9.649 nH,采用ANSYS Q3D和Simplorer进行联合双脉冲仿真,电流不均衡度小于3%。最后,进行了电机控制器样机的试制及测试,实际测试结果表明电流不均衡度小于5%,验证了在车用电机控制器应用中TPAK SiC MOSFET模块均流设计的可行性。
基金Supported by Young Scientists Fund of the National Natural Science Foundation of China(61201040)
文摘Ultra-low power transceiver design is proposed for wireless sensor node used in the wireless sensor network(WSN).Typically,each sensor node contains a transceiver so it is required that both hardware and software designs of WSN node must take care of energy consumption during all modes of operation including active/sleep modes so that the operational life of each node can be increased in order to increase the lifetime of network.The current declared size of the wireless sensor node is of millimeter order,excluding the power source and crystal oscillator.We have proposed a new 2.4 GHz transceiver that has five blocks namely XO,PLL,PA,LNA and IF.The proposed transceiver incorporates less number of low-drop outs(LDOs)regulators.The size of the transceiver is reduced by decreasing the area of beneficiary components up to 0.41 mm;of core area in such a way that some functions are optimally distributed among other components.The proposed design is smaller in size and consumes less power,<1 mW,compared to other transceivers.The operating voltage has also been reduced to 1 V.This transceiver is most efficient and will be fruitful for the wireless networks as it has been designed by considering modern requirements.