期刊文献+
共找到7,289篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
1
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long short-term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
一种基于long short-term memory的唇语识别方法 被引量:4
2
作者 马宁 田国栋 周曦 《中国科学院大学学报(中英文)》 CSCD 北大核心 2018年第1期109-117,共9页
唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往... 唇动视觉信息是说话内容的重要载体。受嘴唇外观、背景信息和说话习惯等影响,即使说话者说相同的内容,唇动视觉信息也会相差很大。为解决唇语视觉信息多样性的问题,提出一种基于long short-term memory(LSTM)的新的唇语识别方法。以往大多数的方法从嘴唇外表信息入手。本方法用嘴唇关键点坐标描述嘴唇形变信息作为唇语视频的特征,它具有类内一致性和类间区分性的特点。然后利用LSTM对特征进行时序编码,它能学习具有区分性和泛化性的空间-时序特征。在公开的唇语数据集GRID、MIRACL-VC和Oulu VS上对本方法做了针对分割的单词或短语的说话者独立的唇语识别评估。在GRID和MIRACL-VC上,本方法的准确率比传统方法至少高30%;在Oulu VS上,本方法的准确率接近于最优结果。以上实验结果表明,本文提出的基于LSTM的唇语识别方法有效地解决了唇语视觉信息多样性的问题。 展开更多
关键词 唇语识别 LONG short-term MEMORY 计算机视觉
在线阅读 下载PDF
Navigation jamming signal recognition based on long short-term memory neural networks 被引量:3
3
作者 FU Dong LI Xiangjun +2 位作者 MOU Weihua MA Ming OU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期835-844,共10页
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ... This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN). 展开更多
关键词 satellite navigation jamming recognition time-frequency(TF)analysis long short-term memory(LSTM)
在线阅读 下载PDF
A two-stage short-term traffic flow prediction method based on AVL and AKNN techniques 被引量:1
4
作者 孟梦 邵春福 +2 位作者 黃育兆 王博彬 李慧轩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期779-786,共8页
Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanc... Short-term traffic flow prediction is one of the essential issues in intelligent transportation systems(ITS). A new two-stage traffic flow prediction method named AKNN-AVL method is presented, which combines an advanced k-nearest neighbor(AKNN)method and balanced binary tree(AVL) data structure to improve the prediction accuracy. The AKNN method uses pattern recognition two times in the searching process, which considers the previous sequences of traffic flow to forecast the future traffic state. Clustering method and balanced binary tree technique are introduced to build case database to reduce the searching time. To illustrate the effects of these developments, the accuracies performance of AKNN-AVL method, k-nearest neighbor(KNN) method and the auto-regressive and moving average(ARMA) method are compared. These methods are calibrated and evaluated by the real-time data from a freeway traffic detector near North 3rd Ring Road in Beijing under both normal and incident traffic conditions.The comparisons show that the AKNN-AVL method with the optimal neighbor and pattern size outperforms both KNN method and ARMA method under both normal and incident traffic conditions. In addition, the combinations of clustering method and balanced binary tree technique to the prediction method can increase the searching speed and respond rapidly to case database fluctuations. 展开更多
关键词 engineering of communication and transportation system short-term traffic flow prediction advanced k-nearest neighbor method pattern recognition balanced binary tree technique
在线阅读 下载PDF
An Improved Adaptive Exponential Smoothing Model for Short-term Travel Time Forecasting of Urban Arterial Street 被引量:8
5
作者 LI Zhi-Peng YU Hong +1 位作者 LIU Yun-Cai LIU Fu-Qiang 《自动化学报》 EI CSCD 北大核心 2008年第11期1404-1409,共6页
旅行时间的短期的预报为聪明的交通系统的成功是必要的。在这份报纸,我们考察预报模型的短期的交通的 state-of-art 并且构画出他们每个模型的基本想法,相关工作,优点和劣势。一改进适应指数的变光滑(IAES ) 模型也被建议克服以前的... 旅行时间的短期的预报为聪明的交通系统的成功是必要的。在这份报纸,我们考察预报模型的短期的交通的 state-of-art 并且构画出他们每个模型的基本想法,相关工作,优点和劣势。一改进适应指数的变光滑(IAES ) 模型也被建议克服以前的适应指数的变光滑模型的缺点。然后,比较实验在状况和反常交通调节评估在牌照匹配获得的直接旅行时间数据(每分钟行数) 上预报模型的四个主要分支的性能的正常交通下面被执行。实验的结果证明每个模型似乎有它的自己的力量和软弱。IASE 的预报表演比在更突然预报地平线(预报的和二步) 的另外的模型优异, IASE 能够处理各种交通条件。 展开更多
关键词 自适应指数 平滑模型 短期旅行时间预测 预测方法 信息处理技术 城市街道 设计方案
在线阅读 下载PDF
ANALYSIS ON SHORT-TERM PRECURSORY ANOMALIES AND SEQUENCE CHARACTERISTIC OF NINGLANG EARTHQUAKE 1998
6
作者 Mu Yayuan 《地学前缘》 EI CAS CSCD 2000年第S1期439-439,共1页
From Octobet 1998 to January 1999,5 earthquakes ( M s≥5) occurred between Ninglang and Yanyuan counties (27°07′~27°12′N,100°40′~101°00′E area).They were situated in 140km southwest of the Xi... From Octobet 1998 to January 1999,5 earthquakes ( M s≥5) occurred between Ninglang and Yanyuan counties (27°07′~27°12′N,100°40′~101°00′E area).They were situated in 140km southwest of the Xichang.Among them,the largest one is M s 6 2 on November 19,1998.Based on small seismic data by the seismic remote sensing station of Xichang and the seismological station of Muli,and regional observation data,passing through careful observation and scientific analyses,we had made better forecasts before the earthquakes.That results obvious social benefits.By processing data of precursory earthquakes,such as,original observation data of total geomagnetic intensity from the station of Xichang,pressure capacitance stressometer and quartz horizaontal pendulum tiltmeter from the Xiaomiao station of Xichang,we summarized the sequence characteristics of the series earthquakes.The information about short\|term anomaly of gruond strain,total geomagnetic intensity and ground tilt before the earthquake is emphatically explained. 展开更多
关键词 Ninglang EARTHQUAKE PRECURSOR seismic SWARM ground TILT short\|term ANOMALIES
在线阅读 下载PDF
C反应蛋白与白蛋白比值联合NRS2002评分对高血压脑出血患者短期预后的预测价值 被引量:5
7
作者 李蒙 付三仙 +3 位作者 王素凡 周力为 梁锐 吕全军 《郑州大学学报(医学版)》 北大核心 2025年第1期106-109,共4页
目的:探讨C反应蛋白与白蛋白比值(CAR)联合营养风险筛查常用量表评分(NRS2002评分)对高血压脑出血患者短期预后的预测价值。方法:选取2023年1至10月郑州大学第一附属医院收治的294例高血压脑出血患者为研究对象,根据发病90 d内的生存情... 目的:探讨C反应蛋白与白蛋白比值(CAR)联合营养风险筛查常用量表评分(NRS2002评分)对高血压脑出血患者短期预后的预测价值。方法:选取2023年1至10月郑州大学第一附属医院收治的294例高血压脑出血患者为研究对象,根据发病90 d内的生存情况分为生存组(n=223)和死亡组(n=71)。采用Logistic回归分析筛选高血压脑出血患者短期预后的危险因素,通过ROC曲线下面积(AUC)评价CAR、NRS2002评分及CAR联合NRS2002评分对高血压脑出血患者短期预后的预测效能。结果:Logistic回归分析显示,CAR和NRS2002评分是高血压脑出血患者预后的危险因素[OR(95%CI)分别为1.212(1.026~1.432)、1.510(1.233~1.849),P<0.05]。CAR联合NRS2002评分预测高血压脑出血患者短期预后的方程为Y=-3.242+0.412×NRS2002+0.192×CAR,预测短期预后的AUC(95%CI)为0.711(0.639~0.782),敏感度和特异度分别为0.648、0.709。结论:CAR联合NRS2002评分预测高血压脑出血患者短期预后具有一定的价值。 展开更多
关键词 C反应蛋白与白蛋白比值 NRS2002评分 高血压脑出血 短期预后
在线阅读 下载PDF
计及铁心非线性的变压器空间动态磁场加速计算方法 被引量:2
8
作者 司马文霞 孙佳琪 +3 位作者 杨鸣 邹德旭 彭庆军 王劲松 《电工技术学报》 北大核心 2025年第5期1559-1574,共16页
快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁... 快速获得变压器空间磁场动态分布是构建变压器数字孪生体的基础之一,然而现有快速计算方法难以快速、准确地获得铁心饱和工况下的磁场分布特性。因此,该文提出了计及铁心非线性的变压器空间动态磁场加速计算方法。首先,构建变压器电磁场路耦合仿真模型,对关键变量进行参数化扫描,仿真获得不同非线性工况下的大量磁场数据,构建涉及铁心非线性工况的主磁通和漏磁通数据集;其次,提出融合卷积神经网络(CNN)和长短期记忆网络(LSTM)的双分支深度学习模型,训练提取磁场数据的空间和时间特征,解决主、漏磁通差异大造成的模型训练难题;最后,利用模型获得输入电压、电流与内部空间磁场分布的非线性映射关系,实现空间动态磁场的加速计算,为变压器数字孪生体的构建提供了快速获得磁场数据的方法。 展开更多
关键词 非线性 卷积神经网络 长短期记忆网络 磁场 加速计算
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:4
9
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
10
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于超参数优化和误差修正的STAGN超短期风电功率预测 被引量:3
11
作者 潘超 王超 +1 位作者 孙惠 孟涛 《电力系统保护与控制》 北大核心 2025年第8期117-129,共13页
针对风电功率预测模型的数据关联性与误差修正适应性问题,提出基于超参数优化和误差修正单元切换的超短期风电功率预测方法。首先,构建时空注意力门控网络预测模型,利用改进开普勒算法进行超参数优化。然后,考虑风电场数据与预测误差之... 针对风电功率预测模型的数据关联性与误差修正适应性问题,提出基于超参数优化和误差修正单元切换的超短期风电功率预测方法。首先,构建时空注意力门控网络预测模型,利用改进开普勒算法进行超参数优化。然后,考虑风电场数据与预测误差之间的非线性关联,构建误差修正自适应单元。同时挖掘风速时序变化特征,构建深度学习单元。在此基础上,提出基于风速矩阵梯度的误差修正单元切换策略。最后,将模型应用于实际风场的功率预测并与其他模型对比分析。结果表明,所提方法在预测精度上优于其他方法,且在风速复杂多变的风场仍具有较高预测精度,验证了所提方法的准确性和适用性。 展开更多
关键词 超短期风电功率预测 改进开普勒算法 误差修正 风速矩阵梯度
在线阅读 下载PDF
基于波动信息优选及切换输入机制的短期延长期风电集群功率预测 被引量:1
12
作者 杨茂 鞠超毅 +1 位作者 张薇 苏欣 《太阳能学报》 北大核心 2025年第3期546-558,共13页
在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为... 在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为波动性优先历史选择和稳定性优先历史选择,在波动性优先历史选择效果较差时,利用稳定性优先历史选择进行误差平衡。所提框架在甘肃省某风电集群进行验证,结果表明,所提框架均方根误差在8~15d所有时间尺度下平均降低0.84%~1.45%,在未来数值天气预报(NWP)可用性匮乏的情况下实现了8~15d预测,有效提高短期延长期预测的可靠性。 展开更多
关键词 风电功率 预测 切换机制 优选 短期 短期延长期
在线阅读 下载PDF
降水空间信息的处理策略对径流预测的影响 被引量:1
13
作者 高玉芳 何川 +1 位作者 彭涛 高勇 《水科学进展》 北大核心 2025年第1期143-154,共12页
降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信... 降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信息不同处理策略对基于LSTM模型的径流预测性能的影响。结果表明:相较于直接使用原始图像的方案,综合运用小波分解和统计特征提取的处理方法测试期纳什效率系数分别提升了11.5%和17.9%,同时也增强了模型的稳定性和解释性;不同的区域划分方法能结合土地利用、土壤类型等下垫面因素,反映降水响应的空间差异性,展现了对各流量等级的适应能力,相较于以流域平均值作为输入的方式,能明显提高捕捉高流量和低流量特征的能力。研究表明在基于LSTM模型的降雨—径流预测模型中引入降水空间信息,可以有效改善预测效果。 展开更多
关键词 径流预测 长短期记忆网络 卷积神经网络 小波变换
在线阅读 下载PDF
基于时间卷积和长短期记忆网络的短期云资源预测模型 被引量:2
14
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 时间卷积网络(TCN) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于改进长短期记忆网络模型的水库库区水温模拟 被引量:1
15
作者 郑铁刚 吴茂喜 +3 位作者 张迪 金瑾 林俊强 孙双科 《农业工程学报》 北大核心 2025年第3期144-153,共10页
水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中... 水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中嵌入相关分析模块自动筛选模型的特征输入,并优化输出维度,提出了一种改进的LSTM模型,并在溪洛渡水库工程开展了模型应用研究,结果表明:1)改进LSTM模型的均方根误差最大值为0.63,纳什效率系数最小值为0.96,表明模型整体性能较好,能够精准地捕捉数据中的长期依赖关系;2)基于改进LSTM模型的库区水温分布预测值和环境流体动力学模型(environmental fluid dynamics code,EFDC)模拟值随时间的量值分布及变化规律基本一致,两者的库区表层年际误差值为-1.19~1.04℃,中层年际误差值为-1.06~1.68℃,底层年际误差值为-1.28~1.07℃,年际水温最大相对误差为8.3%;3)相较于EFDC模型多天的模拟时长,改进模型的计算时间缩短至几百秒,计算效率大幅提升,实现了水温分布的快速、实时精准预测。该研究通过改进LSTM模型,实现了深水水库垂向水温的高效预测,研究结果可为分层取水设施的优化调控提供技术支撑。 展开更多
关键词 水温 模拟 改进的长短期网络记忆模型 水温分布 相关性分析 水温预测 人工智能学习
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:3
16
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于数据驱动和机理模型的机械钻速预测 被引量:1
17
作者 郑双进 江厚顺 +4 位作者 熊梦园 孟胡 詹炜 程荣升 王立辉 《钻采工艺》 北大核心 2025年第1期78-87,共10页
为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网... 为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网络结合长短期记忆网络(TCN-LSTM)作为数据驱动模型,并融合多元钻速预测机理模型,通过物理约束增强数据驱动模型的准确性与可解释性,实验表明融合模型比单一数据驱动模型或机理模型预测精度更高。随后,为进一步提升模型性能,采用了改进的蜣螂优化算法(IDBO)对TCN-LSTM模型进行优化,通过改进种群初始化和更新策略,实现了参数的高效搜索。消融实验及现场应用结果表明,对比BP、RF、LSTM、TCN模型,TCN-LSTM-IDBO模型可以实现机械钻速的精确预测,并且具有较好的泛化能力,可为钻井施工人员提供有力参考。 展开更多
关键词 机械钻速预测 时序卷积网络 长短期记忆网络 变分模态分解 蜣螂优化算法 数据分析
在线阅读 下载PDF
面向涡轮的PCA-POA-LSTM数据驱动建模及故障预警方法 被引量:1
18
作者 刘斌 白红艳 +3 位作者 何璐瑶 张晓北 田野 杨理践 《电子测量与仪器学报》 北大核心 2025年第1期145-155,共11页
针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维... 针对传统LSTM数据驱动模型存在输入参数规模过大导致运算负担过大、超参数选择不当和涡轮系统故障发生频率、运维成本高的问题,提出一种基于PCA-POA-LSTM的涡轮数据驱动建模方法,并结合滑动窗口法实现了涡轮故障预警。首先,应用PCA降维技术,减少输入数据维度;其次,采用POA参数寻优方法选出最优超参数组合;然后,利用LSTM算法预测涡轮的输出参数;最后,在PCA-POA-LSTM涡轮数据驱动模型预测结果的基础上,结合滑动窗口法对涡轮故障进行预警,通过窗口内标准差定义报警阈值,攻克了涡轮故障预警的难题。结果表明,以PCA-POA-LSTM为基础的涡轮数据驱动建模实现了较高的精确度,平均绝对百分比误差均在0.396以下,平均绝对误差均在0.809以下,平均方根误差均在1.387以下。并且故障预警方法,至少可提前173个监测点发出故障预警信号,实现了对涡轮故障预警的目的,为未来开展涡轮健康管理提供了理论依据和技术支持。 展开更多
关键词 涡轮 鹈鹕优化算法 长短期记忆网络 主成分分析 数据驱动
在线阅读 下载PDF
基于SSA-LSTM-Attention的日光温室环境预测模型 被引量:1
19
作者 孟繁佳 许瑞峰 +3 位作者 赵维娟 宋文臻 高艺璇 李莉 《农业工程学报》 北大核心 2025年第11期256-263,共8页
建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechani... 建立准确的温室环境预测模型有助于精准调控温室环境促进作物的生长发育,针对温室小气候具有时序性、非线性和强耦合等特点,该研究提出了一种基于SSA-LSTM-Attention(sparrow search algorithm-long short-term memoryattention mechanism)的日光温室环境预测模型。首先,通过温室物联网数据采集系统获取温室内外环境数据;其次,使用皮尔逊相关性分析法筛选出强相关性因子;最后,构建环境特征时间序列矩阵输入模型进行温室环境预测。对日光温室的室内温度、室内湿度、光照强度和土壤湿度4种环境因子的预测,SSA-LSTM-Attention模型的平均拟合指数达到了97.9%。相较于反向传播神经网络(back propagation neural network,BP)、门控循环单元(gate recurrent unit,GRU)、长短期记忆神经网络(long short term memory,LSTM)和LSTM-Attention(long short-term memory-attention mechanism)模型,分别提高8.1、4.1、3.5、3.0个百分点;平均绝对百分比误差为2.6%,分别降低6.5、3.2、2.8、2.5个百分点。试验结果表明,通过利用SSA自动优化LSTM-Attention模型的超参数,提高了模型预测精度,为日光温室环境超前调控提供了有效的数据支持。 展开更多
关键词 日光温室 麻雀搜索算法 长短期记忆网络 注意力机制 环境预测模型
在线阅读 下载PDF
基于BP-DCKF-LSTM的锂离子电池SOC估计 被引量:2
20
作者 张宇 李维嘉 吴铁洲 《电源技术》 北大核心 2025年第1期155-166,共12页
电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项... 电池荷电状态(SOC)的准确估计是电池管理系统(BMS)的核心功能之一。为了提高锂电池SOC估算精度,提出了一种将反向传播神经网络(BP)、双容积卡尔曼滤波(DCKF)和长短期记忆神经网络(LSTM)相结合的SOC估计方法。针对多温度条件下传统多项式拟合法在拟合开路电压(OCV)与SOC时效果较差的问题,提出了一种基于BP神经网络的拟合方法,通过验证表明该方法能有效提高拟合精度。针对单独使用模型法或数据驱动法估计SOC各自存在的优缺点,提出了一种将DCKF与LSTM相结合的估计方法,在提高估计精度的同时,可以减少参数调节时间和训练成本。实验验证表明,BP-DCKF-LSTM算法的均方根误差(RMSE)和平均绝对误差(MAE)分别小于0.5%和0.4%,具有较高的SOC估算精度和鲁棒性。 展开更多
关键词 荷电状态 反向传播神经网络 双容积卡尔曼滤波 长短期记忆神经网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部