期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A novel feature extraction method for ship-radiated noise 被引量:7
1
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise ship-radiated noise Feature extraction Classification and recognition
在线阅读 下载PDF
A comparative study of four nonlinear dynamic methods and their applications in classification of ship-radiated noise 被引量:1
2
作者 Yu-xing Li Shang-bin Jiao +2 位作者 Bo Geng Qing Zhang You-min Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期183-193,共11页
Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE int... Refined composite multi-scale dispersion entropy(RCMDE),as a new and effective nonlinear dynamic method,has been applied in the field of medical diagnosis and fault diagnosis.In this paper,we first introduce RCMDE into the field of underwater acoustic signal processing for complexity feature extraction of ship radiated noise,and then propose a novel classification method for ship-radiated noise based on RCMDE and k-nearest neighbor(KNN),termed RCMDE-KNN.The results of a comparative experiment show that the proposed RCMDE-KNN classification method can effectively extract the complexity features of ship-radiated noise,and has better classification performance under one and two scales than the other three classification methods based on multi-scale permutation entropy(MPE)and KNN,multi-scale weighted-permutation entropy(MW-PE)and KNN,and multi-scale dispersion entropy(MDE)and KNN,termed MPE-KNN,MW-PE-KNN,and MDE-KNN.It is proved that the RCMDE-KNN classification method for ship-radiated noise is feasible and effective,and can obtain a very high recognition rate. 展开更多
关键词 Nonlinear dynamic Refined composite multi-scale dispersion entropy(RCMDE) Multi-scale dispersion entropy(MDE) Multi-scale weighted-permutation entropy (MW-PE) Multi-scale permutation entropy(MPE) Classification of ship-radiated noise
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
3
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) ship-radiated noise
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部