期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于CatBoost和SHAP的高级别自动驾驶车辆非预期停车冲突风险预测
1
作者 刘擎超 王瑞海 +2 位作者 蔡英凤 王海 陈龙 《汽车安全与节能学报》 北大核心 2025年第1期170-180,共11页
针对高级别自动驾驶车辆非预期停车引发的交通冲突及其环境影响问题,现有研究缺乏对风险特征交互的捕获和可解释性评估。本研究提出了一种基于CatBoost和SHAP的风险预测及解释模型,通过分析城市中心、住宅区和郊区交通网络的接管次数,... 针对高级别自动驾驶车辆非预期停车引发的交通冲突及其环境影响问题,现有研究缺乏对风险特征交互的捕获和可解释性评估。本研究提出了一种基于CatBoost和SHAP的风险预测及解释模型,通过分析城市中心、住宅区和郊区交通网络的接管次数,构建了冲突风险预测模型。结果表明,接管次数在城市中心、住宅区和郊区分别为161次、227次和164次,最高单路段接管次数分别为11次、11次和16次;模型预测精度达93%以上。SHAP分析显示,前后车辆间相对速度和相对位置对冲突风险的影响显著。研究结果对提升自动驾驶车辆的可靠性和安全性具有重要意义。 展开更多
关键词 冲突风险 交通排放 高级别自动驾驶 CatBoost算法 shap解释模型
在线阅读 下载PDF
基于深度学习的重质馏分油分子层次组成预测模型
2
作者 袁壮 王源 +6 位作者 杨哲 徐伟 周鑫 赵辉 陈小博 杨朝合 林扬 《石油学报(石油加工)》 北大核心 2025年第2期362-370,共9页
随着工业大数据时代的到来,基于深度学习建立的原油分子组成预测模型具有适用范围广、构建快捷、准确性高等优点。然而,石油馏分分子层次信息标签获取困难,难以满足深度学习模型训练需求。为解决上述问题,基于商业流程模拟软件Aspen HY... 随着工业大数据时代的到来,基于深度学习建立的原油分子组成预测模型具有适用范围广、构建快捷、准确性高等优点。然而,石油馏分分子层次信息标签获取困难,难以满足深度学习模型训练需求。为解决上述问题,基于商业流程模拟软件Aspen HYSYS与GC-MS×MS全二维气相色谱-飞行时间质谱联用仪提出了一种创新方法,建立足够规模的训练数据库。采用深度神经网络(DNN)建立了重质馏分油分子层次结构组成预测模型,该模型以炼油厂易测得的油品物理化学性质为输入,分子层次结构信息为输出,针对某炼油厂的催化裂化原料油进行分子组成预测,通过SHAP(SHapley Additive exPlanation)方法对模型进行可解释分析。结果表明,基于深度学习的重质馏分油分子组成预测模型能够准确地预测油品分子层次结构信息,目标装置原料分子组成预测平均相对误差小于8%。该模型不仅可对其他炼化装置的原料油性质进行软测量,也可为石油分子层次模型的开发提供准确的重油原料分子信息模型。 展开更多
关键词 重质馏分油 分子组成 深度学习 shapley additive exPlanation(shap)解释 分子管理
在线阅读 下载PDF
基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型 被引量:6
3
作者 陈曦泽 贾俊峰 +2 位作者 白玉磊 郭彤 杜修力 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第6期1061-1070,共10页
为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV... 为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV)和树结构概率密度估计(TPE)算法寻找模型的最优超参数组合.采用不同评价指标将优化后XGBoost模型的预测值与已有方法和未优化XGBoost模型的计算值比较.使用SHAP方法给出XGBoost模型预测结果的整体和局部的解释.结果表明,经过超参数调整优化的XGBoost模型的性能超越了相关规范和经验公式的性能,且SHAP方法能够有效地解释XGBoost模型的输出. 展开更多
关键词 钢管混凝土(CFST)柱 轴向承载力 极限梯度提升(XGBoost) 超参数优化 shap 可解释性
在线阅读 下载PDF
页岩油水平井产量影响因素分析及压裂参数优化决策
4
作者 刘巍 曹小朋 +2 位作者 胡慧芳 程紫燕 卜亚辉 《油气藏评价与开发》 CSCD 北大核心 2024年第5期764-770,778,共8页
济阳坳陷页岩在沙三下亚段和沙四上亚段等主要产层获得重大突破,但开发时间短,存在单井产量差异较大,产量主控因素尚不明确的问题,深入分析页岩油水平井高产主控因素、优化确定合理压裂工艺参数仍是目前研究的重点。为明确各因素对水平... 济阳坳陷页岩在沙三下亚段和沙四上亚段等主要产层获得重大突破,但开发时间短,存在单井产量差异较大,产量主控因素尚不明确的问题,深入分析页岩油水平井高产主控因素、优化确定合理压裂工艺参数仍是目前研究的重点。为明确各因素对水平井产量的影响,基于矿场实际数据开展因素关联性分析和规律挖掘。利用灰色关联分析方法及主成分分析方法定量计算页岩油水平井生产90 d、180 d和270 d的平均日产油量与压裂液用量、加砂量等影响因素之间的相关性,并在此基础上建立页岩油产能预测模型,结合SHAP算法对压裂参数进行优化分析。结果表明:压裂液用量、加砂量和破裂事件数是影响产量的主要工程参数,灰质含量、总有机碳含量和页岩孔隙性是影响产量的主要地质参数;随着生产时间的延长,地质因素对产量的影响逐渐增强,工程因素对产量的影响逐渐减弱;压裂参数优化分析确定了40~45 m压裂段长,2700 m3单段压裂液用量,180 m3单段加砂量为最佳压裂施工参数,为页岩油水平井的开发决策和压裂设计提供了新的技术思路。 展开更多
关键词 水平井产量 影响因素分析 灰色关联分析 shap算法 页岩油
在线阅读 下载PDF
基于卷积神经网络的液化预测模型及可解释性分析 被引量:2
5
作者 龙潇 孙锐 郑桐 《岩土力学》 EI CAS CSCD 北大核心 2024年第9期2741-2753,共13页
常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上... 常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上覆应力、门槛加速度、循环剪应力比、剪切波速、震级与地表峰值加速度11个液化特征建立卷积神经网络(convolutional neural network,简称CNN)模型。引入边界合成少数过采样技术消除不平衡数据集的影响。将CNN模型与随机森林模型、逻辑回归模型、支持向量机模型、极致梯度提升模型和规范方法进行对比,并结合沙普利加性解释(SHapley Additive exPlanations,简称SHAP)分析输入特征对预测结果的影响趋势。结果表明,CNN模型准确率达92.58%,各项指标均优于其他4种机器学习模型和规范方法。对SHAP结果分析可知,修正标贯击数小于15的土层液化概率较高,循环剪应力比CSR小于0.25的土层更不易液化。各因素的影响规律均符合现有认知,预测模型合理可靠。 展开更多
关键词 机器学习 液化预测 卷积神经网络 边界合成少数过采样技术 沙普利加性解释(shap)
在线阅读 下载PDF
基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型 被引量:1
6
作者 真嘉捷 赖丰文 +2 位作者 黄明 李爽 许凯 《岩土力学》 EI CAS CSCD 北大核心 2024年第12期3791-3801,共11页
基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影... 基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影响,结合Boruta算法,确定模型输入特征;利用小波变换滤波器、完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法消除时间序列数据噪声,构建了一种基于LightBGM-Informer的盾构隧道施工期管片上浮预测模型。通过南京和厦门地区某地铁盾构隧道监测数据,验证了所提模型的准确性和适用性。结果表明,所提模型预测精度较循环神经网络(recurrent neural network,RNN)、长短时记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)、Transformer等模型有所提升,且在地质条件不同的数据集上具有良好的泛化性;随着预测序列长度的增加,该模型的性能优势更突出,可准确预测盾构刀盘前方1~2环未施工管片的上浮值。基于沙普利加和解释(Shapley additive explanations,SHAP)方法的特征重要性分析指出,土舱压力及盾头、盾尾垂直位移对管片上浮影响显著。所提模型可为复杂环境下富水地层盾构隧道管片施工智能化控制提供理论指导。 展开更多
关键词 盾构隧道 管片上浮 长时间序列预测问题 Informer模型 shap方法
在线阅读 下载PDF
基于LSTM-多头混合注意力的可解释换道意图预测
7
作者 高凯 刘健 +3 位作者 刘林鸿 刘欣宇 张金来 杜荣华 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第5期763-773,共11页
为了使自动驾驶汽车准确地预测其周围车辆的换道意图,提出了一种基于长短期记忆神经网络(LSTM)-多头混合注意力的可解释换道意图预测模型。该模型可以充分提取目标车辆与其周围车辆之间的时空交互关系,并且提出了一种基于最大熵的Shaple... 为了使自动驾驶汽车准确地预测其周围车辆的换道意图,提出了一种基于长短期记忆神经网络(LSTM)-多头混合注意力的可解释换道意图预测模型。该模型可以充分提取目标车辆与其周围车辆之间的时空交互关系,并且提出了一种基于最大熵的Shapley加性解释方法(SHAP)来解释各个特征在特定时间步对模型输出的影响程度,在HighD数据集上进行了实验。并通过SHAP值的可视化,直观解释了换道预测模型在特定时刻的目标车辆的换道行为。结果表明:该换道预测模型在换道前3 s的综合准确率,分别比LSTM、卷积神经网络(CNN)、多头注意力高出4.03%、9.51%、5.16%,这证明了模型在长时域预测的有效性;错误预测样本归因于模型缺陷或样本稀疏。该换道预测模型可为用户进行模型优化提供指导。 展开更多
关键词 自动驾驶汽车 换道意图预测 注意力机制 长短期记忆神经网络(LSTM) shapley加性解释方法(shap)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部