For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retr...Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retrieval is proposed,which can provide a high-resolution and focused map of the spatial distribution of scatterers on the target. According to theoretical derivation, the modulus of raw data from the maneuvering target is not affected by radial motion components for ISAR imaging system, so the phase retrieval algorithm can be used for ISAR imaging problems. However, the traditional phase retrieval algorithm will be not applicable to ISAR imaging under the condition of random noise. To solve this problem, an algorithm is put forward based on the range Doppler(RD) algorithm and oversampling smoothness(OSS) phase retrieval algorithm. The algorithm captures the target information in order to reduce the influence of the random phase on ISAR echoes, and then applies OSS for focusing imaging based on prior information of the RD algorithm. The simulated results demonstrate the validity of this algorithm, which cannot only obtain high resolution imaging for high speed maneuvering targets under the condition of random noise, but also substantially improve the success rate of the phase retrieval algorithm.展开更多
The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal mod...The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal model of rotating target with fixed acceleration is presented and the weighted linear least squares estimation of rotational parameters with fixed velocity or acceleration is proposed via the relationship of cross-range FM (frequency modulation) parameter, scatterers coordinates and rotational parameters. The FM parameter is calculated via RWT (Radon-Wigner transform). The ISAR imaging and cross-range scaling based on scaled RWT imaging method are implemented after obtaining rotational parameters. The rotational parameters estimation and cross-range scaling are validated by the ISAR processing of experimental radar data, and the method presents good application foreground to the ISAR imaging and scaling of maneuvering target.展开更多
The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is propos...The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.展开更多
Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reas...Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.展开更多
The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and opt...The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and optimal imaging duration. A novel method for optimal imaging instants selection based on the estimation of the Doppler centroid frequencies (DCFs) of a series of images obtained over continuous short durations is proposed. Combined with the optimal imaging duration selection scheme using the image contrast maximization criteria, this method can provide the ship images with the highest focus. Simulated and real data pro- cessing results verify the effectiveness of the proposed imaging method.展开更多
Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.I...Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.展开更多
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a...Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.展开更多
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金supported by the National Natural Science Foundation of China(6157138861601398)the National Natural Science Foundation of Hebei Province(F2016203251)
文摘Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retrieval is proposed,which can provide a high-resolution and focused map of the spatial distribution of scatterers on the target. According to theoretical derivation, the modulus of raw data from the maneuvering target is not affected by radial motion components for ISAR imaging system, so the phase retrieval algorithm can be used for ISAR imaging problems. However, the traditional phase retrieval algorithm will be not applicable to ISAR imaging under the condition of random noise. To solve this problem, an algorithm is put forward based on the range Doppler(RD) algorithm and oversampling smoothness(OSS) phase retrieval algorithm. The algorithm captures the target information in order to reduce the influence of the random phase on ISAR echoes, and then applies OSS for focusing imaging based on prior information of the RD algorithm. The simulated results demonstrate the validity of this algorithm, which cannot only obtain high resolution imaging for high speed maneuvering targets under the condition of random noise, but also substantially improve the success rate of the phase retrieval algorithm.
基金supported by the National Natural Science Foundation of China (60875019)
文摘The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal model of rotating target with fixed acceleration is presented and the weighted linear least squares estimation of rotational parameters with fixed velocity or acceleration is proposed via the relationship of cross-range FM (frequency modulation) parameter, scatterers coordinates and rotational parameters. The FM parameter is calculated via RWT (Radon-Wigner transform). The ISAR imaging and cross-range scaling based on scaled RWT imaging method are implemented after obtaining rotational parameters. The rotational parameters estimation and cross-range scaling are validated by the ISAR processing of experimental radar data, and the method presents good application foreground to the ISAR imaging and scaling of maneuvering target.
文摘The conventional two dimensional(2D)inverse synthetic aperture radar(ISAR)imaging fails to provide the targets'three dimensional(3D)information.In this paper,a 3D ISAR imaging method for the space target is proposed based on mutliorbit observation data and an improved orthogonal matching pursuit(OMP)algorithm.Firstly,the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension.Then,an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data.Finally,scattering centers can be reconstructed with specific three dimensional locations.Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.
基金supported by the Innovation Foundation for Scientific Research Base(NJ20140008NJ20150018)+1 种基金the Aeronautical Science Foundation of China(20132052035)the National Defense Basic Scientific Research(B2520110008)
文摘The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and optimal imaging duration. A novel method for optimal imaging instants selection based on the estimation of the Doppler centroid frequencies (DCFs) of a series of images obtained over continuous short durations is proposed. Combined with the optimal imaging duration selection scheme using the image contrast maximization criteria, this method can provide the ship images with the highest focus. Simulated and real data pro- cessing results verify the effectiveness of the proposed imaging method.
基金supported by the National Natural Science Foundation of China(61871146).
文摘Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by the National Natural Science Foundation for Young Scientists of China
文摘Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.