As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
由于航空发动机工作环境复杂,故障数据稀缺,且单一传感器难以全面表征中介轴承状态,导致现有诊断方法准确率较低。为此,提出了一种基于多传感器信息融合(multi-sensor information fusion,MSIF)和二维卷积神经网络(2-dimensional convol...由于航空发动机工作环境复杂,故障数据稀缺,且单一传感器难以全面表征中介轴承状态,导致现有诊断方法准确率较低。为此,提出了一种基于多传感器信息融合(multi-sensor information fusion,MSIF)和二维卷积神经网络(2-dimensional convolutional neural network,2DCNN)的航空发动机中介轴承故障诊断方法。该方法将多个传感器的时域和频域特征融合为一张RGB图像,从而更加全面地表征中介轴承状态。然后,将生成的RGB图像输入2DCNN模型完成故障诊断。在真实航空发动机试验台的轴承故障数据上的测试中,当训练集与测试集比例为1∶9的小样本条件时,部分传感器组合的诊断准确率即可达99%;比例为7∶3时所有传感器组合的准确率均达100%。此外,所提方法的诊断准确率与基础研究相比,至少提高了13%;且超越了进行对比的5种先进方法。结果表明,该方法不仅实现了航空发动机中介轴承故障的快速精准识别,还在小样本条件下展现出了卓越的诊断性能。展开更多
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
基金Supported by National Natural Science Foundation of China (60874063), and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)