In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the ...In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.展开更多
Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequali...Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Natural Science Foundation of Zhejiang Lishui University of China (Grant Nos KZ05004 and KY06024).
文摘In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.
基金Supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012429)Guangzhou Huashang College Research Team Project(Grant No.2021HSKT03)。
文摘Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.