High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, resp...High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough.展开更多
Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitra...Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents.展开更多
Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was stud...Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.展开更多
The semi-coke was prepared by solid heat carrier with dry distillation in single factor method. The pore structures of raw coal and semi-coke were characterized by Brunauer-Emmett-Teller (BET) and scanning electron mi...The semi-coke was prepared by solid heat carrier with dry distillation in single factor method. The pore structures of raw coal and semi-coke were characterized by Brunauer-Emmett-Teller (BET) and scanning electron microscope (SEM). The results show that the adsorption and desorption isotherm of semi-coke are not coincident. There was a wide pore distribution on the semi-coke, in which mesopores and micropores account for a considerable proportion. Also there are many more secondary pores. With the increase of the final temperature of heat carrier and constant temperature, as well as the decrease of volume ratio of coal and hot carrier reactor, specific surface area and pore volume of semi-coke increased rapidly first and then decreased and finally increased, along with the rapidly reduction of average pore size. SEM photos show that the surface of semi-coke becomes increasingly rough and glossy.展开更多
基金supported by the financial support of National Basic Research Program of China (2012CB723105)National Natural Science Foundation of China (20976117)+1 种基金Shanxi Province Natural Science Foundation(2010011014-3)Shanxi Province Basic Conditions Platform for Science and Technology Project (2010091015)
文摘High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough.
基金supported by the National Basic Research Program of China(2012CB723105)the National Natural Science Foundation of China(20976117)the Technological Innovation Programs of Higher Education Institutions in Shanxi(2013JYT113)
文摘Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents.
基金Project CPEUKF08-04 support by the Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education of China
文摘Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.
基金financial support from the Major State Basic Research Development Program of China (No. 2012CB214902)the National Natural Science Foundation of China (No. 51104159) are greatly appreciated
文摘The semi-coke was prepared by solid heat carrier with dry distillation in single factor method. The pore structures of raw coal and semi-coke were characterized by Brunauer-Emmett-Teller (BET) and scanning electron microscope (SEM). The results show that the adsorption and desorption isotherm of semi-coke are not coincident. There was a wide pore distribution on the semi-coke, in which mesopores and micropores account for a considerable proportion. Also there are many more secondary pores. With the increase of the final temperature of heat carrier and constant temperature, as well as the decrease of volume ratio of coal and hot carrier reactor, specific surface area and pore volume of semi-coke increased rapidly first and then decreased and finally increased, along with the rapidly reduction of average pore size. SEM photos show that the surface of semi-coke becomes increasingly rough and glossy.