Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constr...Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constrained by the high costs of check-up tests and the scarcity of labeled data.This paper presents a framework utilizing self-supervised machine learning to harness the potential of unlabeled data for diagnosing battery aging in electric vehicles during field operations.We validate our method using battery degradation datasets collected over more than two years from twenty real-world electric vehicles.Our analysis comprehensively addresses cell inconsistencies,physical interpretations,and charging uncertainties in real-world applications.This is achieved through self-supervised feature extraction using random short charging sequences in the main peak of incremental capacity curves.By leveraging inexpensive unlabeled data in a self-supervised approach,our method demonstrates improvements in average root mean square errors of 74.54%and 60.50%in the best and worst cases,respectively,compared to the supervised benchmark.This work underscores the potential of employing low-cost unlabeled data with self-supervised machine learning for effective battery health and safety management in realworld scenarios.展开更多
The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it int...The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results.展开更多
State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to ac...State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios.展开更多
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro...Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.展开更多
基金supported by the research project‘‘SafeDaBatt”(03EMF0409A)funded by the German Federal Ministry for Digital and Transport(BMDV)+2 种基金the National Key Research and Development Program of China(2022YFE0102700)the Key Research and Development Program of Shaanxi Province(2023-GHYB-05,2023-YBSF-104)the financial support from the China Scholarship Council(CSC)(202206567008)。
文摘Accurate aging diagnosis is crucial for the health and safety management of lithium-ion batteries in electric vehicles.Despite significant advancements achieved by data-driven methods,diagnosis accuracy remains constrained by the high costs of check-up tests and the scarcity of labeled data.This paper presents a framework utilizing self-supervised machine learning to harness the potential of unlabeled data for diagnosing battery aging in electric vehicles during field operations.We validate our method using battery degradation datasets collected over more than two years from twenty real-world electric vehicles.Our analysis comprehensively addresses cell inconsistencies,physical interpretations,and charging uncertainties in real-world applications.This is achieved through self-supervised feature extraction using random short charging sequences in the main peak of incremental capacity curves.By leveraging inexpensive unlabeled data in a self-supervised approach,our method demonstrates improvements in average root mean square errors of 74.54%and 60.50%in the best and worst cases,respectively,compared to the supervised benchmark.This work underscores the potential of employing low-cost unlabeled data with self-supervised machine learning for effective battery health and safety management in realworld scenarios.
基金Supported by the Zhejiang Provincial"Jianbing"and"Lingyan"R&D Programs(2023C03012,2024C01126)。
文摘The encoding aperture snapshot spectral imaging system,based on the compressive sensing theory,can be regarded as an encoder,which can efficiently obtain compressed two-dimensional spectral data and then decode it into three-dimensional spectral data through deep neural networks.However,training the deep neural net⁃works requires a large amount of clean data that is difficult to obtain.To address the problem of insufficient training data for deep neural networks,a self-supervised hyperspectral denoising neural network based on neighbor⁃hood sampling is proposed.This network is integrated into a deep plug-and-play framework to achieve self-supervised spectral reconstruction.The study also examines the impact of different noise degradation models on the fi⁃nal reconstruction quality.Experimental results demonstrate that the self-supervised learning method enhances the average peak signal-to-noise ratio by 1.18 dB and improves the structural similarity by 0.009 compared with the supervised learning method.Additionally,it achieves better visual reconstruction results.
基金funded by the “SMART BATTERY” project, granted by Villum Foundation in 2021 (project number 222860)。
文摘State of health(SoH) estimation plays a key role in smart battery health prognostic and management.However,poor generalization,lack of labeled data,and unused measurements during aging are still major challenges to accurate SoH estimation.Toward this end,this paper proposes a self-supervised learning framework to boost the performance of battery SoH estimation.Different from traditional data-driven methods which rely on a considerable training dataset obtained from numerous battery cells,the proposed method achieves accurate and robust estimations using limited labeled data.A filter-based data preprocessing technique,which enables the extraction of partial capacity-voltage curves under dynamic charging profiles,is applied at first.Unsupervised learning is then used to learn the aging characteristics from the unlabeled data through an auto-encoder-decoder.The learned network parameters are transferred to the downstream SoH estimation task and are fine-tuned with very few sparsely labeled data,which boosts the performance of the estimation framework.The proposed method has been validated under different battery chemistries,formats,operating conditions,and ambient.The estimation accuracy can be guaranteed by using only three labeled data from the initial 20% life cycles,with overall errors less than 1.14% and error distribution of all testing scenarios maintaining less than 4%,and robustness increases with aging.Comparisons with other pure supervised machine learning methods demonstrate the superiority of the proposed method.This simple and data-efficient estimation framework is promising in real-world applications under a variety of scenarios.
基金supported by the Research Grant Fund from Kwangwoon University in 2023,the National Natural Science Foundation of China under Grant(62311540155)the Taishan Scholars Project Special Funds(tsqn202312035)the open research foundation of State Key Laboratory of Integrated Chips and Systems.
文摘Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.