Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard...Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard particle swarm optimization(SPSO),and then the searching behavior of the particle swarm is discussed and the change of the particles’distribution during the iteration process is studied.The existence of different particle behaviors enables the particle swarm to explore the searching space more comprehensively,thus PSO achieves remarkable results in the inversion of SP anomalies.Finally,six improved PSOs aiming at improving the inversion accuracy and the convergence speed by changing the update of particle positions,inertia weights and learning factors are introduced for the inversion of the cylinder model,and the effectiveness of these algorithms is verified by numerical experiments.The inversion results show that these improved PSOs successfully give the model parameters which are very close to the theoretical value,and simultaneously provide guidance when determining which strategy is suitable for the inversion of the regular polarized bodies and similar geophysical problems.展开更多
The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and e...The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation.展开更多
Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is w...Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.展开更多
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an...Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.展开更多
基金Projects(41874145,72088101)supported by the National Natural Science Foundation of China。
文摘Prticle swarm optimization(PSO)is adopted to invert the self-potential anomalies of simple geometry.Taking the vertical semi-infinite cylinder model as an example,the model parameters are first inverted using standard particle swarm optimization(SPSO),and then the searching behavior of the particle swarm is discussed and the change of the particles’distribution during the iteration process is studied.The existence of different particle behaviors enables the particle swarm to explore the searching space more comprehensively,thus PSO achieves remarkable results in the inversion of SP anomalies.Finally,six improved PSOs aiming at improving the inversion accuracy and the convergence speed by changing the update of particle positions,inertia weights and learning factors are introduced for the inversion of the cylinder model,and the effectiveness of these algorithms is verified by numerical experiments.The inversion results show that these improved PSOs successfully give the model parameters which are very close to the theoretical value,and simultaneously provide guidance when determining which strategy is suitable for the inversion of the regular polarized bodies and similar geophysical problems.
基金Project(41574123)supported by the National Natural Science Foundation of ChinaProject(2015zzts250)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2013FY110800)supported by the National Basic Research Scientific Program of China
文摘The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation.
基金Project(42174170)supported by the National Natural Science Foundation of China。
文摘Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments.
基金Projects(42174170,41874145,72088101)supported by the National Natural Science Foundation of ChinaProject(CX20200228)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring.